"""' .. module:: downloadStocks An example of retrieving empirical equities data using cleaner .. moduleauthor:: Christopher Phillippi <*****@*****.**> """ import afp.keywords as keywords import afp.settings as settings import cleaner.store as store import datetime import os if __name__ == "__main__": tickerList = keywords.getTickerList(os.path.join(settings.KEYWORDS_DIR, "splist.csv")) fromDate = datetime.date(2011, 1, 3) toDate = datetime.date(2013, 11, 27) store.adjustedClose(tickerList, fromDate, toDate, filename="spDaily.csv")
import afp.keywords as keywords import afp.count as count import afp.matrices as matrices import afp.sentiment as sentiment import afp.settings as settings import afp.strategies as strats import cleaner.retrieve as retrieve import numpy as np import pandas as pd import datetime import os if __name__ == '__main__': begin = datetime.date( 2011, 1, 3 ) end = datetime.date( 2013, 11, 27 ) tickerList = keywords.getTickerList() keywordsMap = keywords.getKeywordToIndexMap() sentCounter = count.SentimentWordCounter( keywordsMap, sentiment.classifier() ) mentionCounter = count.WordCounter( keywordsMap ) empiricalDf = matrices.getEmpiricalDataFrame( tickerList, begin, end ) constrained = False minVarBenchmark = { True : 'minvarConstrained.csv', False : 'minvarAnalytical.csv' } maxDivBenchmark = { True : 'maxDivConstrained.csv', False : 'maxDivAnalytical.csv' } minvarBenchmarkDf = matrices.getEmpiricalDataFrame( [ strats.MinimumVariance().getName() ], begin, end, retrieve.adjustedClosesFilepath( filename = minVarBenchmark[ constrained ] ) ) maxDivBenchmarkDf = matrices.getEmpiricalDataFrame( [ strats.MaximumDiversification().getName() ], begin, end, retrieve.adjustedClosesFilepath( filename = maxDivBenchmark[ constrained ] ) ) riskParityDf = matrices.getEmpiricalDataFrame( [ strats.RiskParity().getName() ], begin, end, retrieve.adjustedClosesFilepath( filename = 'riskParity.csv' ) ) benchmarkDf = matrices.getEmpiricalDataFrame( [ 'OEF', 'SPY' ], begin, end, retrieve.benchmarkFilepath() ) summedSentDf = matrices.getCountDataFrame( tickerList, sentCounter, empiricalDf.index, aggregator = np.sum ) articleSentDf = matrices.getCountDataFrame( tickerList, sentCounter, empiricalDf.index ) summedMentionDf = matrices.getCountDataFrame( tickerList, mentionCounter, empiricalDf.index, aggregator = np.sum ) articleMentionDf = matrices.getCountDataFrame( tickerList, mentionCounter, empiricalDf.index )