Пример #1
0
def ConstrainedMaximize(Q, l, m):
    dim = l.shape[0]
    if dim == 1:
        return (l[0] + np.sqrt(Q[0, 0])) / m[0]

    # Discard infinite values, handled afterwards
    pos_bad = l.min(axis=0) == -np.inf
    L = l.copy()
    L[:, pos_bad] = 0

    # Solve the quadratic equation
    A = lp.inverse(Q)
    lAl = lp.dot_VAV(L, A, L)
    lAm = lp.dot_VAV(L, A, m)
    mAm = lp.dot_VAV(m, A, m)

    delta = lAm**2 - (lAl - 1.) * mAm
    pos_bad = np.logical_or(pos_bad, delta <= 0)
    delta[pos_bad] = 1.

    mu = (lAm + np.sqrt(delta)) / mAm

    # Check the positivity
    #    v = dot_AV(A,mu*m-L)
    rm_ad = np.array
    v = lp.dot_AV(rm_ad(A), rm_ad(mu) * rm_ad(m) - rm_ad(L))
    pos_bad = np.logical_or(pos_bad, np.any(v < 0, axis=0))

    result = mu
    result[pos_bad] = -np.inf

    # Solve the lower dimensional sub-problems
    # We could restrict to the bad positions, and avoid repeating computations
    for i in range(dim):
        axes = np.full((dim), True)
        axes[i] = False
        res = ConstrainedMaximize(Q[axes][:, axes], l[axes], m[axes])
        result = np.maximum(result, res)
    return result
Пример #2
0
def Scheme(a, b, d2u, stencil):
    delta = d2u - lp.dot_VAV(
        np.expand_dims(stencil.V1, (2, 3)),
        np.expand_dims(a, 2),
        np.expand_dims(stencil.V1, (2, 3)),
    )

    spad_sum(b)
    spad_sum(delta)

    # For now, replace `b` with one when it is zero, to prevent errors during automatic
    # differentiation.
    b_zero = b == 0
    b = np.where(b_zero, 1, b)

    residue = -np.inf

    for i in range(stencil.V3.shape[2]):
        residue = np.maximum(
            residue,
            H3(
                stencil.Q[:, :, i, np.newaxis, np.newaxis],
                stencil.w[:, i, np.newaxis, np.newaxis],
                b,
                delta[stencil.V3_indices[:, i]],
            ),
        )

    for i in range(stencil.V2.shape[2]):
        residue = np.maximum(
            residue,
            H2(
                stencil.omega0[i, np.newaxis, np.newaxis],
                stencil.omega1[:, i, np.newaxis, np.newaxis],
                stencil.omega2[:, i, np.newaxis, np.newaxis],
                b,
                delta[stencil.V2_indices[:, i]],
            ),
        )

    # Reset residue to minus infinity where `b` should have been zero.
    residue = np.where(b_zero, -np.inf, residue)

    for i in range(stencil.V1.shape[1]):
        residue = np.maximum(
            residue, H1(stencil.V1[:, i, np.newaxis, np.newaxis], delta[i]))

    return residue
def NextAngleAndSuperbase(theta, sb, D):
    pairs = np.stack([(1, 2), (2, 0), (0, 1)], axis=1)
    scals = lp.dot_VAV(np.expand_dims(sb[:, pairs[0]], axis=1),
                       np.expand_dims(D, axis=-1),
                       np.expand_dims(sb[:, pairs[1]], axis=1))
    phi = np.arctan2(scals[2], scals[1])
    cst = -scals[0] / np.sqrt(scals[1]**2 + scals[2]**2)
    theta_max = np.pi * np.ones(3)
    mask = cst < 1
    theta_max[mask] = (phi[mask] - np.arccos(cst[mask])) / 2
    theta_max[theta_max <= 0] += np.pi
    theta_max[theta_max <= theta] = np.pi
    k = np.argmin(theta_max)
    i, j = (k + 1) % 3, (k + 2) % 3
    return (theta_max[k],
            np.stack([sb[:, i], -sb[:, j], sb[:, j] - sb[:, i]], axis=1))
def MinimizeTrace(u, alpha, bc, sqrt_relax=1e-16):
    # Compute the tensor decompositions
    D = MakeD(alpha)
    theta, sb = AnglesAndSuperbases(D)
    theta = np.array([theta[:-1], theta[1:]])

    # Compute the second order differences in the direction orthogonal to the superbase
    sb_rotated = np.array([-sb[1], sb[0]])
    d2u = bc.Diff2(u, sb_rotated)
    d2u[..., bc.not_interior] = 0.  # Placeholder values to silent NaNs

    # Compute the coefficients of the tensor decompositions
    sb1, sb2 = np.roll(sb, 1, axis=1), np.roll(sb, 2, axis=1)
    sb1, sb2 = (e.reshape((2, 3, 1) + sb.shape[2:]) for e in (sb1, sb2))
    D = D.reshape((2, 2, 1, 3, 1) + D.shape[3:])
    # Axes of D are space,space,index of superbase element, index of D, index of superbase, and possibly shape of u
    scals = lp.dot_VAV(sb1, D, sb2)

    # Compute the coefficients of the trigonometric polynomial
    scals, theta = (bc.as_field(e) for e in (scals, theta))
    coefs = -lp.dot_VV(scals, np.expand_dims(d2u, axis=1))

    # Optimality condition for the trigonometric polynomial in the interior
    value = coefs[0] - np.sqrt(
        np.maximum(coefs[1]**2 + coefs[2]**2, sqrt_relax))
    coefs_ = np.array(coefs)  # removed AD information
    angle = np.arctan2(-coefs_[2], -coefs_[1]) / 2.
    angle[angle < 0] += np.pi

    # Boundary conditions for the trigonometric polynomial minimization
    mask = np.logical_not(np.logical_and(theta[0] <= angle, angle <= theta[1]))
    t, c = theta[:, mask], coefs[:, mask]
    value[mask], amin_t = ad.min_argmin(c[0] + c[1] * np.cos(2 * t) +
                                        c[2] * np.sin(2 * t),
                                        axis=0)

    # Minimize over superbases
    value, amin_sb = ad.min_argmin(value, axis=0)

    # Record the optimal angles for future use
    angle[mask] = np.take_along_axis(t, np.expand_dims(amin_t, axis=0),
                                     axis=0).squeeze(axis=0)  # Min over bc
    angle = np.take_along_axis(angle, np.expand_dims(amin_sb, axis=0),
                               axis=0)  # Min over superbases

    return value, angle
Пример #5
0
def SchemeLinear(u, x, f, bc):
    coef, offsets = Selling.Decomposition(D(x))

    # coef_min = np.min(coef)
    # offsets_norm2 = lp.dot_VV(offsets, offsets)
    # offsets_max2 = np.max(np.where(coef < 1e-13, 0, offsets_norm2))
    # print(f"h: {bc.gridscale}, c: {coef_min}, e2: {offsets_max2}")

    du = bc.DiffCentered(u, offsets)
    d2u = bc.Diff2(u, offsets)
    return np.where(
        bc.interior,
        -lp.dot_VAV(omega(x), lp.inverse(D(x)),
                    np.sum(coef * du * offsets, axis=1)) -
        lp.dot_VV(coef, d2u) - f,
        u - bc.grid_values,
    )
Пример #6
0
 def F(g):
     return lp.dot_VAV(g - omega, D, g - omega)