def __init__(self, config):
        DDQN.__init__(self, config)
        self.memory = Prioritised_Replay_Buffer(self.hyperparameters,
                                                config.seed)

        if config.resume:
            self.load_resume(config.resume_path)
    def __init__(self, config, agent_name_=agent_name):
        DDQN.__init__(self, config, agent_name_=agent_name_)
        self.q_network_local = self.create_NN(input_dim=self.state_size, output_dim=self.action_size + 1)
        self.q_network_optimizer = optim.Adam(self.q_network_local.parameters(), lr=self.hyperparameters["learning_rate"], eps=1e-4)
        self.q_network_target = self.create_NN(input_dim=self.state_size, output_dim=self.action_size + 1)
        Base_Agent.copy_model_over(from_model=self.q_network_local, to_model=self.q_network_target)

        self.wandb_watch(self.q_network_local, log_freq=self.config.wandb_model_log_freq)
Пример #3
0
    def __init__(self, config):
        DDQN.__init__(self, config)

        model_path = self.config.model_path if self.config.model_path else 'Models'
        self.q_network_local = self.create_NN(input_dim=self.state_size, output_dim=self.action_size + 1)
        self.q_network_local_path = os.path.join(model_path, "{}_q_network_local.pt".format(self.agent_name))

        if self.config.load_model: self.locally_load_policy()
        self.q_network_optimizer = optim.Adam(self.q_network_local.parameters(), lr=self.hyperparameters["learning_rate"], eps=1e-4)
        self.q_network_target = self.create_NN(input_dim=self.state_size, output_dim=self.action_size + 1)
        Base_Agent.copy_model_over(from_model=self.q_network_local, to_model=self.q_network_target)
Пример #4
0
 def __init__(self, config, agent_name_=agent_name):
     DDQN.__init__(self, config, agent_name_=agent_name_)
     self.memory = Prioritised_Replay_Buffer(self.hyperparameters,
                                             config.seed)
Пример #5
0
 def __init__(self, config):
     DDQN.__init__(self, config)
     self.memory = Prioritised_Replay_Buffer(self.hyperparameters,
                                             config.seed, config.use_GPU)