Пример #1
0
def define_batch_env2(config_envs, env_processes):
    """Create environments and apply all desired wrappers.

  Args:
    constructor: Constructor of an OpenAI gym environment.
    num_agents: Number of environments to combine in the batch.
    env_processes: Whether to step environment in external processes.

  Returns:
    In-graph environments object.
  """
    with tf.variable_scope('environments'):
        if env_processes:

            envs = []
            j = 0
            for env in config_envs:
                envs.append(tools.wrappers.ExternalProcess2(env, j))
                j = j + 1
            # envs = [
            #     tools.wrappers.ExternalProcess(constructor)
            #     for _ in range(num_agents)]
        else:
            envs = [constructor() for _ in range(num_agents)]
        batch_env = tools.BatchEnv(envs, blocking=not env_processes)
        batch_env = tools.InGraphBatchEnv(batch_env)
    return batch_env
Пример #2
0
def _define_batch_env(constructor, num_agents, env_processes, blocking):
  if env_processes:
    envs = [
      tools.wrappers.ExternalProcess(constructor)
      for _ in range(num_agents)]
  else:
    envs = [constructor() for _ in range(num_agents)]
  batch_env = tools.BatchEnv(envs, blocking=blocking)
  batch_env = tools.InGraphBatchEnv(batch_env)
  return batch_env
Пример #3
0
 def _create_test_batch_env(self, durations):
     envs = []
     for duration in durations:
         env = tools.MockEnvironment(observ_shape=(2, 3),
                                     action_shape=(3, ),
                                     min_duration=duration,
                                     max_duration=duration)
         env = tools.wrappers.ConvertTo32Bit(env)
         envs.append(env)
     batch_env = tools.BatchEnv(envs, blocking=True)
     batch_env = tools.InGraphBatchEnv(batch_env)
     return batch_env
Пример #4
0
def define_batch_env(constructor, num_agents, env_processes, outdir=None):
    """Create environments and apply all desired wrappers.

    Args:
      constructor: Constructor of an OpenAI gym environment.
      num_agents: Number of environments to combine in the batch.
      env_processes: Whether to step environment in external processes.

    Returns:
      In-graph environments object.
    """
    with tf.variable_scope('environments'):
        if env_processes:
            if num_agents > 1 and outdir is not None:
                envs = []
                envs = [
                    tools.wrappers.ExternalProcess(constructor)
                    for _ in range(num_agents - 1)
                ]
                video_env = constructor()
                import gym
                video_env = gym.wrappers.Monitor(
                    video_env,
                    outdir,
                    video_callable=capped_cubic_video_schedule,
                    force=True)
                envs.append(tools.wrappers.ExternalProcess(lambda: video_env))
            else:
                envs = [
                    tools.wrappers.ExternalProcess(constructor)
                    for _ in range(num_agents)
                ]
        else:
            envs = [constructor() for _ in range(num_agents)]
        batch_env = tools.BatchEnv(envs, blocking=not env_processes)
        batch_env = tools.InGraphBatchEnv(batch_env)
    return batch_env