def test_batch_model_validate(self):
        input_example_meta = af.register_example(name='batch_train_example',
                                                 support_type=ExampleSupportType.EXAMPLE_BOTH)
        model_meta = af.register_model(model_name='mnist_model',
                                       model_type=ModelType.SAVED_MODEL)
        with af.config(af.BaseJobConfig(platform='local', engine='python', job_name='evaluate')):
            input_example = af.read_example(example_info=input_example_meta,
                                            executor=PythonObjectExecutor(python_object=ReadBatchExample()))

            batch_train = af.train(input_data_list=[input_example],
                                   executor=PythonObjectExecutor(python_object=TrainBatchMnistModel()),
                                   model_info=model_meta)

            model_validate = af.model_validate(input_data_list=[input_example],
                                               model_info=model_meta,
                                               executor=PythonObjectExecutor(python_object=BatchModelValidate()),
                                               output_num=0)
        af.stop_before_control_dependency(model_validate, batch_train)
        workflow_id = af.run(test_util.get_project_path())
        res = af.wait_workflow_execution_finished(workflow_id)
        self.assertEqual(0, res)
Пример #2
0
def run_project(project_root_path):
    af.set_project_config_file(project_root_path + "/project.yaml")
    project_name = af.project_config().get_project_name()
    artifact_prefix = project_name + "."

    validate_trigger = af.external_trigger(name='validate')
    push_trigger = af.external_trigger(name='push')

    with af.global_config_file(project_root_path + '/resources/workflow_config.yaml'):
        with af.config('train_job'):
            train_example = af.register_example(name=artifact_prefix + 'train_example',
                                                support_type=ExampleSupportType.EXAMPLE_STREAM,
                                                stream_uri=EXAMPLE_URI.format('train'))
            train_read_example = af.read_example(example_info=train_example,
                                                 executor=PythonObjectExecutor(python_object=TrainExampleReader()))
            train_transform = af.transform(input_data_list=[train_read_example],
                                           executor=PythonObjectExecutor(python_object=TrainExampleTransformer()))
            train_model = af.register_model(model_name=artifact_prefix + 'logistic-regression',
                                            model_type=ModelType.SAVED_MODEL,
                                            model_desc='logistic regression model')
            train_channel = af.train(input_data_list=[train_transform],
                                     executor=PythonObjectExecutor(python_object=ModelTrainer()),
                                     model_info=train_model)
        with af.config('validate_job'):
            validate_example = af.register_example(name=artifact_prefix + 'validate_example',
                                                   support_type=ExampleSupportType.EXAMPLE_STREAM,
                                                   stream_uri=EXAMPLE_URI.format('evaluate'),
                                                   data_format='npz')
            validate_read_example = af.read_example(example_info=validate_example,
                                                    executor=PythonObjectExecutor(
                                                        python_object=ValidateExampleReader()))
            validate_transform = af.transform(input_data_list=[validate_read_example],
                                              executor=PythonObjectExecutor(python_object=ValidateTransformer()))
            validate_artifact_name = artifact_prefix + 'validate_artifact'
            validate_artifact = af.register_artifact(name=validate_artifact_name,
                                                     stream_uri=get_file_dir(__file__) + '/validate_result')
            validate_channel = af.model_validate(input_data_list=[validate_transform],
                                                 model_info=train_model,
                                                 executor=PythonObjectExecutor(
                                                     python_object=ModelValidator(validate_artifact_name)),
                                                 )
        with af.config('push_job'):
            # Push model to serving
            # Register metadata of pushed model
            push_model_artifact_name = artifact_prefix + 'push_model_artifact'
            push_model_artifact = af.register_artifact(name=push_model_artifact_name,
                                                       stream_uri=get_file_dir(__file__) + '/pushed_model')
            push_channel = af.push_model(model_info=train_model,
                                         executor=PythonObjectExecutor(
                                             python_object=ModelPusher(push_model_artifact_name)))

        with af.config('predict_job'):
            predict_example = af.register_example(name=artifact_prefix + 'predict_example',
                                                  support_type=ExampleSupportType.EXAMPLE_STREAM,
                                                  stream_uri=EXAMPLE_URI.format('predict'))
            predict_read_example = af.read_example(example_info=predict_example,
                                                   executor=PythonObjectExecutor(python_object=PredictExampleReader()))
            predict_transform = af.transform(input_data_list=[predict_read_example],
                                             executor=PythonObjectExecutor(python_object=PredictTransformer()))
            predict_channel = af.predict(input_data_list=[predict_transform],
                                         model_info=train_model,
                                         executor=PythonObjectExecutor(python_object=ModelPredictor()))

            write_example = af.register_example(name=artifact_prefix + 'export_example',
                                                support_type=ExampleSupportType.EXAMPLE_STREAM,
                                                stream_uri=get_file_dir(__file__) + '/predict_result')
            af.write_example(input_data=predict_channel,
                             example_info=write_example,
                             executor=PythonObjectExecutor(python_object=ExampleWriter()))

        af.model_version_control_dependency(src=validate_channel,
                                            model_version_event_type=ModelVersionEventType.MODEL_GENERATED,
                                            dependency=validate_trigger, model_name=train_model.name)

        af.model_version_control_dependency(src=push_channel,
                                            model_version_event_type=ModelVersionEventType.MODEL_VALIDATED,
                                            dependency=push_trigger, model_name=train_model.name)
    # Run workflow
    transform_dag = project_name
    af.deploy_to_airflow(project_root_path, dag_id=transform_dag)
    af.run(project_path=project_root_path,
           dag_id=transform_dag,
           scheduler_type=SchedulerType.AIRFLOW)
def run_workflow():
    # Init project
    af.init_ai_flow_context()

    artifact_prefix = af.current_project_config().get_project_name() + "."
    # Training of model
    with af.job_config('train'):
        # Register metadata of training data(dataset) and read dataset(i.e. training dataset)
        train_dataset = af.register_dataset(name=artifact_prefix + 'train_dataset',
                                            uri=DATASET_URI.format('train'))
        train_read_dataset = af.read_dataset(dataset_info=train_dataset,
                                             read_dataset_processor=DatasetReader())

        # Register model metadata and train model
        train_model = af.register_model(model_name=artifact_prefix + 'KNN',
                                        model_desc='KNN model')
        train_channel = af.train(input=[train_read_dataset],
                                 training_processor=ModelTrainer(),
                                 model_info=train_model)

    # Validation of model
    with af.job_config('validate'):
        # Read validation dataset
        validate_dataset = af.register_dataset(name=artifact_prefix + 'validate_dataset',
                                               uri=DATASET_URI.format('test'))
        # Validate model before it is used to predict
        validate_read_dataset = af.read_dataset(dataset_info=validate_dataset,
                                                read_dataset_processor=ValidateDatasetReader())
        validate_artifact_name = artifact_prefix + 'validate_artifact'
        validate_artifact = af.register_artifact(name=validate_artifact_name,
                                                 uri=get_file_dir(__file__) + '/validate_result')
        validate_channel = af.model_validate(input=[validate_read_dataset],
                                             model_info=train_model,
                                             model_validation_processor=ModelValidator(validate_artifact_name))

    # Prediction(Inference) using flink
    with af.job_config('predict'):
        # Read test data and do prediction
        predict_dataset = af.register_dataset(name=artifact_prefix + 'predict_dataset',
                                              uri=DATASET_URI.format('test'))
        predict_read_dataset = af.read_dataset(dataset_info=predict_dataset,
                                               read_dataset_processor=Source())
        predict_channel = af.predict(input=[predict_read_dataset],
                                     model_info=train_model,
                                     prediction_processor=Predictor())
        # Save prediction result
        write_dataset = af.register_dataset(name=artifact_prefix + 'write_dataset',
                                            uri=get_file_dir(__file__) + '/predict_result.csv')
        af.write_dataset(input=predict_channel,
                         dataset_info=write_dataset,
                         write_dataset_processor=Sink())

    # Define relation graph connected by control edge: train -> validate -> predict
    af.action_on_model_version_event(job_name='validate',
                                     model_version_event_type=ModelVersionEventType.MODEL_GENERATED,
                                     model_name=train_model.name)
    af.action_on_model_version_event(job_name='predict',
                                     model_version_event_type=ModelVersionEventType.MODEL_VALIDATED,
                                     model_name=train_model.name)
    # Submit workflow
    af.workflow_operation.submit_workflow(af.current_workflow_config().workflow_name)
    # Run workflow
    af.workflow_operation.start_new_workflow_execution(af.current_workflow_config().workflow_name)
Пример #4
0
def run_project(project_root_path):

    af.set_project_config_file(project_root_path + "/project.yaml")
    project_name = af.project_config().get_project_name()
    artifact_prefix = project_name + "."

    validate_trigger = af.external_trigger(name='validate')
    push_trigger = af.external_trigger(name='push')

    with af.global_config_file(project_root_path + '/resources/workflow_config.yaml'):
        # the config of train job is a periodic job  which means it will
        # run every `interval`(defined in workflow_config.yaml) seconds
        with af.config('train_job'):
            # Register metadata raw training data(example) and read example(i.e. training dataset)
            train_example = af.register_example(name=artifact_prefix + 'train_example',
                                                support_type=ExampleSupportType.EXAMPLE_BATCH,
                                                batch_uri=EXAMPLE_URI.format('train'))
            train_read_example = af.read_example(example_info=train_example,
                                                 executor=PythonObjectExecutor(python_object=ExampleReader()))

            # Transform(preprocessing) example
            train_transform = af.transform(input_data_list=[train_read_example],
                                           executor=PythonObjectExecutor(python_object=ExampleTransformer()))

            # Register model metadata and train model
            train_model = af.register_model(model_name=artifact_prefix + 'logistic-regression',
                                            model_type=ModelType.SAVED_MODEL,
                                            model_desc='logistic regression model')
            train_channel = af.train(input_data_list=[train_transform],
                                     executor=PythonObjectExecutor(python_object=ModelTrainer()),
                                     model_info=train_model)
        with af.config('validate_job'):
            # Validation of model
            # Read validation dataset and validate model before it is used to predict

            validate_example = af.register_example(name=artifact_prefix + 'validate_example',
                                                   support_type=ExampleSupportType.EXAMPLE_STREAM,
                                                   batch_uri=EXAMPLE_URI.format('evaluate'))
            validate_read_example = af.read_example(example_info=validate_example,
                                                    executor=PythonObjectExecutor(
                                                        python_object=ValidateExampleReader()))
            validate_transform = af.transform(input_data_list=[validate_read_example],
                                              executor=PythonObjectExecutor(python_object=ValidateTransformer()))
            validate_artifact_name = artifact_prefix + 'validate_artifact'
            validate_artifact = af.register_artifact(name=validate_artifact_name,
                                                     batch_uri=get_file_dir(__file__) + '/validate_result')
            validate_channel = af.model_validate(input_data_list=[validate_transform],
                                                 model_info=train_model,
                                                 executor=PythonObjectExecutor(
                                                     python_object=ModelValidator(validate_artifact_name)))
        with af.config('push_job'):
            # Push model to serving
            # Register metadata of pushed model
            push_model_artifact_name = artifact_prefix + 'push_model_artifact'
            push_model_artifact = af.register_artifact(name=push_model_artifact_name,
                                                       batch_uri=get_file_dir(__file__) + '/pushed_model')
            push_channel = af.push_model(model_info=train_model,
                                         executor=PythonObjectExecutor(
                                            python_object=ModelPusher(push_model_artifact_name)))

        with af.config('predict_job'):
            # Prediction(Inference)
            predict_example = af.register_example(name=artifact_prefix + 'predict_example',
                                                  support_type=ExampleSupportType.EXAMPLE_STREAM,
                                                  stream_uri=EXAMPLE_URI.format('predict'))
            predict_read_example = af.read_example(example_info=predict_example,
                                                   executor=PythonObjectExecutor(python_object=PredictExampleReader()))
            predict_transform = af.transform(input_data_list=[predict_read_example],
                                             executor=PythonObjectExecutor(python_object=PredictTransformer()))
            predict_channel = af.predict(input_data_list=[predict_transform],
                                         model_info=train_model,
                                         executor=PythonObjectExecutor(python_object=ModelPredictor()))
            # Save prediction result
            write_example = af.register_example(name=artifact_prefix + 'write_example',
                                                support_type=ExampleSupportType.EXAMPLE_STREAM,
                                                stream_uri=get_file_dir(__file__) + '/predict_result')
            af.write_example(input_data=predict_channel,
                             example_info=write_example,
                             executor=PythonObjectExecutor(python_object=ExampleWriter()))

        # Define relation graph connected by control edge:
        # Once a round of training is done, validator will be launched and
        # pusher will be launched if the new model is better.
        # Prediction will start once the first round of training is done and
        # when pusher pushes(deploys) a new model, the predictor will use the latest deployed model as well.
        af.model_version_control_dependency(src=validate_channel,
                                            model_version_event_type=ModelVersionEventType.MODEL_GENERATED,
                                            dependency=validate_trigger, model_name=train_model.name)
        af.model_version_control_dependency(src=push_channel,
                                            model_version_event_type=ModelVersionEventType.MODEL_VALIDATED,
                                            dependency=push_trigger, model_name=train_model.name)

    # Run workflow
    transform_dag = project_name
    af.deploy_to_airflow(project_root_path, dag_id=transform_dag)
    af.run(project_path=project_root_path,
           dag_id=transform_dag,
           scheduler_type=SchedulerType.AIRFLOW)
def run_workflow():
    af.init_ai_flow_context()

    artifact_prefix = af.current_project_config().get_project_name() + "."

    # the config of train job is a periodic job  which means it will
    # run every `interval`(defined in workflow_config.yaml) seconds
    with af.job_config('train'):
        # Register metadata raw training data(dataset) and read dataset(i.e. training dataset)
        train_dataset = af.register_dataset(name=artifact_prefix +
                                            'train_dataset',
                                            uri=DATASET_URI.format('train'))
        train_read_dataset = af.read_dataset(
            dataset_info=train_dataset, read_dataset_processor=DatasetReader())

        # Transform(preprocessing) dataset
        train_transform = af.transform(
            input=[train_read_dataset],
            transform_processor=DatasetTransformer())

        # Register model metadata and train model
        train_model = af.register_model(model_name=artifact_prefix +
                                        'logistic-regression',
                                        model_desc='logistic regression model')
        train_channel = af.train(input=[train_transform],
                                 training_processor=ModelTrainer(),
                                 model_info=train_model)
    with af.job_config('validate'):
        # Validation of model
        # Read validation dataset and validate model before it is used to predict

        validate_dataset = af.register_dataset(
            name=artifact_prefix + 'validate_dataset',
            uri=DATASET_URI.format('evaluate'))
        validate_read_dataset = af.read_dataset(
            dataset_info=validate_dataset,
            read_dataset_processor=ValidateDatasetReader())
        validate_transform = af.transform(
            input=[validate_read_dataset],
            transform_processor=ValidateTransformer())
        validate_artifact_name = artifact_prefix + 'validate_artifact'
        validate_artifact = af.register_artifact(name=validate_artifact_name,
                                                 uri=get_file_dir(__file__) +
                                                 '/validate_result')
        validate_channel = af.model_validate(
            input=[validate_transform],
            model_info=train_model,
            model_validation_processor=ModelValidator(validate_artifact_name))
    with af.job_config('push'):
        # Push model to serving
        # Register metadata of pushed model
        push_model_artifact_name = artifact_prefix + 'push_model_artifact'
        push_model_artifact = af.register_artifact(
            name=push_model_artifact_name,
            uri=get_file_dir(__file__) + '/pushed_model')
        af.push_model(
            model_info=train_model,
            pushing_model_processor=ModelPusher(push_model_artifact_name))

    with af.job_config('predict'):
        # Prediction(Inference)
        predict_dataset = af.register_dataset(
            name=artifact_prefix + 'predict_dataset',
            uri=DATASET_URI.format('predict'))
        predict_read_dataset = af.read_dataset(
            dataset_info=predict_dataset,
            read_dataset_processor=PredictDatasetReader())
        predict_transform = af.transform(
            input=[predict_read_dataset],
            transform_processor=PredictTransformer())
        predict_channel = af.predict(input=[predict_transform],
                                     model_info=train_model,
                                     prediction_processor=ModelPredictor())
        # Save prediction result
        write_dataset = af.register_dataset(
            name=artifact_prefix + 'write_dataset',
            uri=get_file_dir(__file__) + '/predict_result')
        af.write_dataset(input=predict_channel,
                         dataset_info=write_dataset,
                         write_dataset_processor=DatasetWriter())

    # Define relation graph connected by control edge:
    # Once a round of training is done, validator will be launched and
    # pusher will be launched if the new model is better.
    # Prediction will start once the first round of training is done and
    # when pusher pushes(deploys) a new model, the predictor will use the latest deployed model as well.
    af.action_on_model_version_event(
        job_name='validate',
        model_version_event_type=ModelVersionEventType.MODEL_GENERATED,
        model_name=train_model.name)
    af.action_on_model_version_event(
        job_name='push',
        model_version_event_type=ModelVersionEventType.MODEL_VALIDATED,
        model_name=train_model.name)

    # Run workflow
    af.workflow_operation.submit_workflow(
        af.current_workflow_config().workflow_name)
    af.workflow_operation.start_new_workflow_execution(
        af.current_workflow_config().workflow_name)
Пример #6
0
def run_workflow():
    af.init_ai_flow_context()

    artifact_prefix = af.current_project_config().get_project_name() + "."

    with af.job_config('train'):
        # Register metadata raw training data(dataset) and read dataset(i.e. training dataset)
        train_dataset = af.register_dataset(name=artifact_prefix +
                                            'train_dataset',
                                            uri=DATASET_URI.format('train'))
        train_read_dataset = af.read_dataset(
            dataset_info=train_dataset,
            read_dataset_processor=TrainDatasetReader())
        train_transform = af.transform(
            input=[train_read_dataset],
            transform_processor=TrainDatasetTransformer())
        train_model = af.register_model(model_name=artifact_prefix +
                                        'logistic-regression',
                                        model_desc='logistic regression model')
        train_channel = af.train(input=[train_transform],
                                 training_processor=ModelTrainer(),
                                 model_info=train_model)
    with af.job_config('validate'):
        validate_dataset = af.register_dataset(
            name=artifact_prefix + 'validate_dataset',
            uri=DATASET_URI.format('evaluate'))
        validate_read_dataset = af.read_dataset(
            dataset_info=validate_dataset,
            read_dataset_processor=ValidateDatasetReader())
        validate_transform = af.transform(
            input=[validate_read_dataset],
            transform_processor=ValidateTransformer())
        validate_artifact_name = artifact_prefix + 'validate_artifact'
        validate_artifact = af.register_artifact(name=validate_artifact_name,
                                                 uri=get_file_dir(__file__) +
                                                 '/validate_result')
        validate_channel = af.model_validate(
            input=[validate_transform],
            model_info=train_model,
            model_validation_processor=ModelValidator(validate_artifact_name))
    with af.job_config('push'):
        # Push model to serving
        # Register metadata of pushed model
        push_model_artifact_name = artifact_prefix + 'push_model_artifact'
        push_model_artifact = af.register_artifact(
            name=push_model_artifact_name,
            uri=get_file_dir(__file__) + '/pushed_model')
        af.push_model(
            model_info=train_model,
            pushing_model_processor=ModelPusher(push_model_artifact_name))
    with af.job_config('predict'):
        predict_dataset = af.register_dataset(
            name=artifact_prefix + 'predict_dataset',
            uri=DATASET_URI.format('predict'))
        predict_read_dataset = af.read_dataset(
            dataset_info=predict_dataset,
            read_dataset_processor=PredictDatasetReader())
        predict_transform = af.transform(
            input=[predict_read_dataset],
            transform_processor=PredictTransformer())
        predict_channel = af.predict(input=[predict_transform],
                                     model_info=train_model,
                                     prediction_processor=ModelPredictor())
        write_dataset = af.register_dataset(
            name=artifact_prefix + 'export_dataset',
            uri=get_file_dir(__file__) + '/predict_result')
        af.write_dataset(input=predict_channel,
                         dataset_info=write_dataset,
                         write_dataset_processor=DatasetWriter())

    af.action_on_model_version_event(
        job_name='validate',
        model_version_event_type=ModelVersionEventType.MODEL_GENERATED,
        model_name=train_model.name)
    af.action_on_model_version_event(
        job_name='push',
        model_version_event_type=ModelVersionEventType.MODEL_VALIDATED,
        model_name=train_model.name)

    # Run workflow
    af.workflow_operation.submit_workflow(
        af.current_workflow_config().workflow_name)
    af.workflow_operation.start_new_workflow_execution(
        af.current_workflow_config().workflow_name)
Пример #7
0
def run_workflow():
    af.init_ai_flow_context()
    artifact_prefix = af.current_project_config().get_project_name() + "."
    with af.job_config('train'):
        # Training of model
        # Register metadata raw training data(dataset) and read dataset(i.e. training dataset)
        train_dataset = af.register_dataset(name=artifact_prefix +
                                            'train_dataset',
                                            uri=DATASET_URI.format('train'))
        train_read_dataset = af.read_dataset(
            dataset_info=train_dataset, read_dataset_processor=DatasetReader())

        # Transform(preprocessing) dataset
        train_transform = af.transform(
            input=[train_read_dataset],
            transform_processor=DatasetTransformer())

        # Register model metadata and train model
        train_model = af.register_model(model_name=artifact_prefix +
                                        'logistic-regression',
                                        model_desc='logistic regression model')
        train_channel = af.train(input=[train_transform],
                                 training_processor=ModelTrainer(),
                                 model_info=train_model)

    with af.job_config('evaluate'):
        # Evaluation of model
        evaluate_dataset = af.register_dataset(
            name=artifact_prefix + 'evaluate_dataset',
            uri=DATASET_URI.format('evaluate'))
        evaluate_read_dataset = af.read_dataset(
            dataset_info=evaluate_dataset,
            read_dataset_processor=EvaluateDatasetReader())
        evaluate_transform = af.transform(
            input=[evaluate_read_dataset],
            transform_processor=EvaluateTransformer())
        # Register disk path used to save evaluate result
        evaluate_artifact_name = artifact_prefix + 'evaluate_artifact'
        evaluate_artifact = af.register_artifact(name=evaluate_artifact_name,
                                                 uri=get_file_dir(__file__) +
                                                 '/evaluate_result')
        # Evaluate model
        evaluate_channel = af.evaluate(
            input=[evaluate_transform],
            model_info=train_model,
            evaluation_processor=ModelEvaluator(evaluate_artifact_name))

    with af.job_config('validate'):
        # Validation of model
        # Read validation dataset and validate model before it is used to predict

        validate_dataset = af.register_dataset(
            name=artifact_prefix + 'validate_dataset',
            uri=DATASET_URI.format('evaluate'))
        validate_read_dataset = af.read_dataset(
            dataset_info=validate_dataset,
            read_dataset_processor=ValidateDatasetReader())
        validate_transform = af.transform(
            input=[validate_read_dataset],
            transform_processor=ValidateTransformer())
        validate_artifact_name = artifact_prefix + 'validate_artifact'
        validate_artifact = af.register_artifact(name=validate_artifact_name,
                                                 uri=get_file_dir(__file__) +
                                                 '/validate_result')
        validate_channel = af.model_validate(
            input=[validate_transform],
            model_info=train_model,
            model_validation_processor=ModelValidator(validate_artifact_name))
    with af.job_config('push'):
        # Push model to serving
        # Register metadata of pushed model
        push_model_artifact_name = artifact_prefix + 'push_model_artifact'
        push_model_artifact = af.register_artifact(
            name=push_model_artifact_name,
            uri=get_file_dir(__file__) + '/pushed_model')
        af.push_model(
            model_info=train_model,
            pushing_model_processor=ModelPusher(push_model_artifact_name))

    with af.job_config('predict'):
        # Prediction(Inference)
        predict_dataset = af.register_dataset(
            name=artifact_prefix + 'predict_dataset',
            uri=DATASET_URI.format('predict'))
        predict_read_dataset = af.read_dataset(
            dataset_info=predict_dataset,
            read_dataset_processor=PredictDatasetReader())
        predict_transform = af.transform(
            input=[predict_read_dataset],
            transform_processor=PredictTransformer())
        predict_channel = af.predict(input=[predict_transform],
                                     model_info=train_model,
                                     prediction_processor=ModelPredictor())
        # Save prediction result
        write_dataset = af.register_dataset(
            name=artifact_prefix + 'write_dataset',
            uri=get_file_dir(__file__) + '/predict_result')
        af.write_dataset(input=predict_channel,
                         dataset_info=write_dataset,
                         write_dataset_processor=DatasetWriter())

        # Define relation graph connected by control edge: train -> evaluate -> validate -> push -> predict
        af.action_on_job_status('evaluate', 'train')
        af.action_on_job_status('validate', 'evaluate')
        af.action_on_job_status('push', 'validate')
        af.action_on_job_status('predict', 'push')

    # Run workflow
    af.workflow_operation.submit_workflow(
        af.current_workflow_config().workflow_name)
    af.workflow_operation.start_new_workflow_execution(
        af.current_workflow_config().workflow_name)