Пример #1
0
def prep_files(wave):
    aia_files_131 = glob.glob(
        '/Users/laurahayes/QPP/interesting_event_2014-611/aia_full/*{:s}*.fits'
        .format(wave))
    aia_files_131.sort()
    maps = []
    for f in aia_files_131:
        try:
            m = sunpy.map.Map(f)
            maps.append(m)
        except:
            print(f)

    map_list = []
    for m in maps:
        m_updated_pointing = update_pointing(m)

        m_registered = register(m_updated_pointing)

        #m_normalized = sunpy.map.Map(m_registered.data/m_registered.exposure_time.to(u.s).value,
        #m_registered.meta)

        map_list.append(m_registered)

    map_list = sunpy.map.Map(map_list, sequence=True)

    for m in map_list:
        m.save(savedir + 'aia_{:s}_'.format(wave) + str(m.date) + '.fits')
Пример #2
0
def aia_prep(aia_map):
    """
    Prep an AIA map.

    This runs:
    - `aiapy.calibrate.update_pointing`
    - `aiapy.calibrate.register`
    - `calibrate.correct_degradation(aia_map)`

    And normalises the data by exposure time to get the data in units of DN/s.

    Parameters
    ----------
    aia_map : sunpy.map.sources.AIAMap
        A full disc AIA map.

    Returns
    -------
    aia_map : sunpy.map.sources.AIAMap
        Prepped map.
    """
    from aiapy import calibrate
    aia_map = calibrate.update_pointing(aia_map)
    aia_map = calibrate.register(aia_map)
    aia_map = calibrate.correct_degradation(aia_map)
    # Convert from DN to DN/s
    aia_map = sunpy.map.Map(aia_map.data / aia_map.exposure_time.to_value(u.s),
                            aia_map.meta)
    return aia_map
Пример #3
0
 def aiaprep(fitsFile):
     map = Map(fitsFile)
     from aiapy.calibrate import register, update_pointing, normalize_exposure
     m_updated_pointing = update_pointing(map)
     m_registered = register(m_updated_pointing)
     m_normalized = normalize_exposure(m_registered)
     return m_normalized
Пример #4
0
def run_prep(m):
    m_updated_pointing = update_pointing(m)
    m_registered = register(m_updated_pointing)
    data_normalized = m_registered.data/m_registered.exposure_time.to(u.s).value
    meta_normalized = m_registered.meta
    meta_normalized['EXPTIME'] = 1.0
    m_normalized = sunpy.map.Map(data_normalized, meta_normalized)
    return m_normalized
Пример #5
0
def prep(aia_sunpy_map, isHMI=False):
    from aiapy.calibrate import register, update_pointing, normalize_exposure
    if not isHMI:
        aia_sunpy_map = update_pointing(aia_sunpy_map)
        del aia_sunpy_map
        m_registered = register(m_updated_pointing)
        del m_updated_pointing
        return normalize_exposure(m_registered)
    else:
        return register(aia_sunpy_map)
Пример #6
0
def gen_lvl_1p5(lvl1_fname_list,lvl1_path):
    for af in lvl1_fname_list:
        m = sunpy.map.Map(lvl1_path+'/'+af)
        m_up = update_pointing(m)
        m_reg = register(m_up)
        m_norm = sunpy.map.Map(m_reg.data/m_reg.exposure_time.to(u.s).value,
                               m_reg.meta)
        new_name = af.replace('lev1', 'lev1.5')
        m_norm.save(lvl1_path+'/'+new_name)
        print('to lvl 1.5: {} at {}'.format(str(m_norm.wavelength),str(m_norm.date)))
    return
Пример #7
0
def do_prep(mapy):

    # calculate psf if local file doesn't exist
    if not os.path.exists(
            "/Users/laurahayes/QPP/interesting_event_2014-611/aia_ana/psf_{:s}.npy"
            .format(wave)):
        print("calculating psf as file not found")
        if isinstance(mm, list):
            psf = aiapy.psf.psf(mm[0].wavelength)
        else:
            psf = aiapy.psf.psf(mm.wavelength)
        np.save("psf_{:s}".format(wave), psf)

    # load in psf array and deconvolve
    psf = np.load("psf_{:s}.npy".format(wave))
    t1 = time.time()
    m_deconvolved = aiapy.psf.deconvolve(mapy, psf=psf)
    t2 = time.time() - t1
    print("deconvolution done {:f}".format(t2))

    # aia_prep to level 1.5
    t1 = time.time()
    m_updated_pointing = update_pointing(m_deconvolved)
    m_registered = register(m_updated_pointing)
    m_normalized = normalize_exposure(m_registered)
    t3 = time.time() - t1

    def reduce_mem(m):
        return m._new_instance(m.data.astype(np.float32), m.meta)

    final_maps = reduce_mem(m_normalized)

    basepath = "/Users/laurahayes/QPP/interesting_event_2014-611/aia_prepped_deconvolve/"
    filename = "prepped_aia_{:.0f}_{:s}.fits".format(
        final_maps.wavelength.value, final_maps.date.strftime("%Y%m%d_%H%M%S"))
    t1 = time.time()
    final_maps.save(basepath + filename)
    t4 = time.time() - t1

    print("it took {:f} seconds to deconvolve".format(t2))
    print("it took {:f} seconds to prep".format(t3))
    print("it took {:f} seconds to write".format(t4))
Пример #8
0
# commands I used in iPython (prob should be a Juypter notebook?)
#caveats: openCV implementation has a wrong pixel center or padding (I think)
#         cupy implementation is not ideal, I just did the simplest 
#             possible array copying and function replacement

import update_register as ur
from aiapy.calibrate import register, update_pointing
import sunpy.map

path = './AIA_data/171A/aia_lev1_171a_2017_09_10t01_17_09_35z_image_lev1.fits'
m = sunpy.map.Map(path)
m_up = update_pointing(m)

%timeit m_r1 = register(m_up)
%timeit m_r2 = ur.cfd_register(m_up)
%timeit m_r3 = ur.CV_register(m_up)
%timeit m_r4 = ur.cupy_register(m_up)

"""
local machine, WSL:
OG: ~12 sec
JI, new cfd: ~3sec
openCV: 1.5 sec 
(no cupy)

NVIDIA raplab:
OG: ~8 sec
JI, new cfd: ~2.1 sec
(no openCV)
cupy: either ~2.1 sec (first call) or 1.4 sec (subsequent)
Пример #9
0
import aiapy.psf as psf_
from aiapy.calibrate import register, update_pointing

import os

##############################################################################
# Use the SunPy tool `Fido <https://docs.sunpy.org/en/v3.0.1/guide/acquiring_data/fido.html>`_ to find and download level 1 AIA data. 
q = Fido.search(a.Time('2011-06-07T06:52:00', '2011-06-07T06:52:10'),
                a.Instrument('AIA'),
                a.Wavelength(wavemin=171*u.angstrom, wavemax=171*u.angstrom))
aia_map = sunpy.map.Map(Fido.fetch(q))

##############################################################################
# Convert to level 1.5 AIA data. See the `registering and aligning level 1 data <https://aiapy.readthedocs.io/en/latest/generated/gallery/prepping_level_1_data.html>`_
# example in aiapy documentation for more details. 
m_updated_pointing = update_pointing(aia_map)
m_registered = register(m_updated_pointing)
m_normalized = sunpy.map.Map(
    m_registered.data/m_registered.exposure_time.to(u.s).value,
    m_registered.meta)

##############################################################################
# Compute the point-spread function (PSF) and use it to deconvolve the image.
# Warning: the PSF computation can take over 16 minutes on a CPU. If you have
# an NVIDIA GPU and CuPy installed, then PSF will automatically use it.
# See the `PSF documentation <https://aiapy.readthedocs.io/en/latest/api/aiapy.psf.psf.html>`_ for details.
psf = psf_.psf(m_normalized.wavelength)
map_deconvolved = psf_.deconvolve(m_normalized, psf=psf)

##############################################################################
# Save the deconvolved image as a FITS file without compression using SunPy.
Пример #10
0
def astro_plot(
        file_list,
        rel_indexes,
        all_images,
        wvln,
        ROI_LATLON,
        n_row_col,
        save_path,
        threshold=(False, 1),
        regions_highlight=(),
        showPreview=False,
):
    """
    This function is analogous to sunpy plotting, but uses astropy maps instead. Optimised for     parallel processing
    :param file_list: List of files from glob
    :param rel_indexes: Which section this process takes care of
    :param all_images: List containing all files
    :param wvln: Wavelength (unitless)
    :param main_roi: Region of interest to be separated: [x0, y0, length, height]
    :param n_row_col: Amount of rows and columns to separate in
    :param vmin_vmax: min and max exposure for the wavelength
    :param save_path: Path to save figures and lightcurves to
    :param threshold: Whether to set a threshold or not. If true, then input?
    :param regions_highlight: Which regions to highlight
    """
    import datetime

    # Need to open the first fits file!
    # Create a n x n x n_obs array
    os.makedirs(save_path, exist_ok=True)

    # Need to define ROI and exposure limits; Create reference submap to then with respect to it
    large_roi = Mtool.ROI_defCoords(ROI_LATLON)
    large_roi_ref = large_roi.copy()
    smap_ref = sunpy.map.Map(all_images[0])  # Fetch the first map
    all_hpc = sunpy.map.all_coordinates_from_map(smap_ref)
    all_hgs = all_hpc.transform_to("heliographic_stonyhurst")

    # Set out empty time and lcurve ndarrays
    sub_time_array = np.array(np.arange(len(all_images)), dtype="str")
    sub_lcurve = np.zeros([n_row_col, n_row_col, len(all_images)])
    sub_pixel_array = np.zeros([n_row_col, n_row_col, len(all_images)])

    # For each of the images, we need to advance the regions
    for relevantIndex, file in zip(rel_indexes, file_list):
        m = sunpy.map.Map(file)
        m_updated_pointing = update_pointing(m)
        m_registered = register(m_updated_pointing)
        aia_curr = normalize_exposure(m_registered)
        aia_curr_base_copy = deepcopy(aia_curr)
        header = aia_curr.fits_header
        sub_time_array[relevantIndex] = datetime.datetime.strptime(
            header["DATE-OBS"], "%Y-%m-%dT%H:%M:%S.%f")

        # If not the first Map, we must track the Region of Interest
        if relevantIndex > 0:
            large_roi = Mtool.calculateLons(smap_ref,
                                            aia_curr,
                                            Coords=large_roi_ref)
            pass

        small_rois = Mtool.splitCoords(large_roi, n_row_col)
        # largeSegment = Mtool.getSegment(large_roi, aia_curr, all_hgs_coords=all_hgs)

        # These are exclusively the images. The order will hold after vector works!
        for regionIndex, segmentCoord in small_rois:
            if regionIndex in regions_highlight:
                smallCurrSegment = Mtool.getSegment(segmentCoord,
                                                    aia_curr,
                                                    all_hgs_coords=all_hgs)
                # We translate the number into new form
                row, col = translate_number(regionIndex, n_row_col)

                # Rotate vector such that it matches the image when 'lower' is used
                smallRegData = aia_curr.data[smallCurrSegment]
                # subreg_init = smallRegData.copy()

                # Calculate some threshold and use it to only display much higher than given
                if threshold[0]:
                    minus_plus_mean = np.array([
                        smallRegData.mean() -
                        threshold[1] * smallRegData.std(),
                        smallRegData.mean() +
                        threshold[1] * smallRegData.std(),
                    ])

                    above_two_sd = smallRegData > minus_plus_mean[1]
                    below_two_sd = smallRegData < minus_plus_mean[1]

                    smallRegData[below_two_sd] = 0
                    ref_mean = smallRegData[above_two_sd].mean()
                    smallRegData[below_two_sd] = np.nan
                    n_pixels = np.count_nonzero(~np.isnan(smallRegData))
                    sub_pixel_array[row, col, relevantIndex] = n_pixels

                elif not threshold[0]:
                    n_pixels = np.count_nonzero(~np.isnan(smallRegData))
                    sub_pixel_array[row, col, relevantIndex] = n_pixels
                    ref_mean = smallRegData.mean()

                sub_lcurve[row, col, relevantIndex] = ref_mean
                aia_curr.data[smallCurrSegment] = 0

                # TODO : Make a figure using a copy of the base AIA plot, with the area that is selected blacked out
                #        Save as row_col
                # curr_subRegion_savePath = f"{save_path}/{col:02d}_{row:02d}/"

        # Showing a preview to check whether working
        # aia_curr.data[segment] = 0
        bottom_left = SkyCoord(250 * u.arcsec,
                               350 * u.arcsec,
                               frame=aia_curr.coordinate_frame)
        submap = aia_curr.submap(bottom_left=bottom_left,
                                 width=500 * u.arcsec,
                                 height=500 * u.arcsec)
        plt.figure(figsize=(10, 10))
        ax = plt.subplot(projection=submap)
        submap.plot(axes=ax, clip_interval=(1, 99.99) * u.percent)
        plt.savefig(f"{save_path}{relevantIndex:04d}.png")
        # plt.show()
        plt.close()

        # smallRegData = subreg_init
        # TODO : Set up a second map that does not black out
        submap_base_copy = aia_curr_base_copy.submap(bottom_left=bottom_left,
                                                     width=500 * u.arcsec,
                                                     height=500 * u.arcsec)
        plt.figure(figsize=(10, 10))
        ax = plt.subplot(projection=submap_base_copy)
        submap_base_copy.plot(axes=ax, clip_interval=(1, 99.99) * u.percent)
        # plt.axis("off")
        # plt.show()
        filledFolder = f"{save_path}Filled/"
        os.makedirs(filledFolder, exist_ok=True)
        plt.savefig(f"{filledFolder}{relevantIndex:04d}.png")
        plt.close()

    # Now select the relevant chunk of the vector and cut it to that size. Then we can append it onto the larger one?
    sub_time_array = sub_time_array[rel_indexes]
    sub_lcurve = sub_lcurve[:, :, rel_indexes]
    sub_pixel_array = sub_pixel_array[:, :, rel_indexes]

    np.save(f"{save_path}lcurves_{rel_indexes[-1]:04d}.npy", sub_lcurve)
    np.save(f"{save_path}times_{rel_indexes[-1]:04d}.npy", sub_time_array)
    np.save(f"{save_path}pix_{rel_indexes[-1]:04d}.npy", sub_pixel_array)
Пример #11
0
def overplot_aia_coords(aiaimg, pch_obj):

    plt.rcParams.update({'font.size': 16})
    aia = Map(aiaimg)

    if aia.fits_header['lvl_num'] == 1:
        aia2 = update_pointing(aia)
        aia = register(aia2)

    aia_north = pch_obj['AIA171'][0]
    #aia_north = pch_obj['AIA171'][0].resample('0.5D').median()

    n_lat = aia_north[np.abs(
        pd.to_datetime(aia_north.index).date - aia.date.to_datetime().date()
    ) <= datetime.timedelta(days=8.25)].N_lower_lat.values * u.rad
    n_lon = aia_north[np.abs(
        pd.to_datetime(aia_north.index).date - aia.date.to_datetime().date()
    ) <= datetime.timedelta(days=8.25)].N_mean_lon.values * u.rad
    times = aia_north[np.abs(
        pd.to_datetime(aia_north.index).date -
        aia.date.to_datetime().date()) <= datetime.timedelta(days=8.25)].index
    n_pts = coordinates.HeliographicStonyhurst(n_lon, n_lat, obstime=times)
    n_pts_hpc = n_pts.transform_to(aia.coordinate_frame)

    #fov = 800 * u.arcsec
    #mid_pt = n_pts_hpc[int(np.floor((len(n_pts_hpc)-1)/2))]
    #bottom_left = SkyCoord(mid_pt.Tx - fov/2, mid_pt.Ty - fov/2, frame=aia.coordinate_frame)
    #smap = aia.submap(bottom_left, width=fov, height=fov)

    #ax = plt.subplot(projection=smap)
    #smap.plot()
    #smap.draw_limb()
    #ax.grid(False)
    #ax.plot_coord(n_pts_hpc, 'x', color='deepskyblue', label='North PCH')
    #plt.legend()
    #plt.show()

    #------------------------------------

    #aia_south = pch_obj['AIA171'][1].resample('0.5D').median()
    aia_south = pch_obj['AIA171'][1]
    s_lat = aia_south[np.abs(
        pd.to_datetime(aia_south.index).date - aia.date.to_datetime().date()
    ) <= datetime.timedelta(days=8.25)].S_lower_lat.values * u.rad
    s_lon = aia_south[np.abs(
        pd.to_datetime(aia_south.index).date - aia.date.to_datetime().date()
    ) <= datetime.timedelta(days=8.25)].S_mean_lon.values * u.rad
    times = aia_south[np.abs(
        pd.to_datetime(aia_south.index).date -
        aia.date.to_datetime().date()) <= datetime.timedelta(days=8.25)].index
    s_pts = coordinates.HeliographicStonyhurst(s_lon, s_lat, obstime=times)
    s_pts_hpc = s_pts.transform_to(aia.coordinate_frame)

    # fov = 800 * u.arcsec
    # mid_pt = s_pts_hpc[int(np.floor((len(s_pts_hpc)-1)/2))]
    # bottom_left = SkyCoord(mid_pt.Tx - fov/2, mid_pt.Ty - fov/2, frame=aia.coordinate_frame)
    # smap = aia.submap(bottom_left, width=fov, height=fov)
    smap = aia

    n_zoom_coords = SkyCoord(Tx=(-200, 200) * u.arcsec,
                             Ty=(850, 1050) * u.arcsec,
                             frame=smap.coordinate_frame)
    s_zoom_coords = SkyCoord(Tx=(-500, 500) * u.arcsec,
                             Ty=(-1050, -850) * u.arcsec,
                             frame=smap.coordinate_frame)

    n_zoom = smap.submap(n_zoom_coords)
    n_zoom.data[0, 0] = smap.min()
    n_zoom.data[-1, -1] = smap.max()
    s_zoom = smap.submap(s_zoom_coords)
    s_zoom.data[0, 0] = smap.min()
    s_zoom.data[-1, -1] = smap.max()

    fig = plt.figure(figsize=(10, 10))
    ax = plt.subplot(projection=smap)
    smap.plot()
    ax.grid(False)
    ax.plot_coord(n_pts_hpc, 'x', color='cornflowerblue', label='North PCH')
    ax.plot_coord(s_pts_hpc, 'x', color='rebeccapurple', label='South PCH')
    smap.draw_quadrangle(n_zoom_coords,
                         edgecolor="white",
                         linestyle="-",
                         linewidth=2)
    smap.draw_quadrangle(s_zoom_coords,
                         edgecolor="white",
                         linestyle="-",
                         linewidth=2)
    plt.legend()
    plt.savefig('/Users/mskirk/Desktop/SWAP Paper Plots/PCH_AIA171_' +
                str(aia.date.to_datetime().date()) + '.png')

    fig2 = plt.figure(figsize=(4, 2), frameon=False)
    ax2 = plt.subplot(projection=n_zoom)
    n_zoom.plot()
    ax2.grid(False)
    ax2.set_axis_off()
    ax2.set_title('')
    ax2.plot_coord(n_pts_hpc, 'x', color='cornflowerblue', label='North PCH')
    plt.savefig('/Users/mskirk/Desktop/SWAP Paper Plots/PCH_AIA171N_' +
                str(aia.date.to_datetime().date()) + '.png')

    fig3 = plt.figure(figsize=(10, 2), frameon=False)
    ax2 = plt.subplot(projection=s_zoom)
    s_zoom.plot()
    ax2.grid(False)
    ax2.set_axis_off()
    ax2.set_title('')
    ax2.plot_coord(s_pts_hpc, 'x', color='rebeccapurple', label='South PCH')
    plt.savefig('/Users/mskirk/Desktop/SWAP Paper Plots/PCH_AIA171S_' +
                str(aia.date.to_datetime().date()) + '.png')