import numpy as np import pandas as pd from aibrite.ml.neuralnet import NeuralNet from aibrite.ml.neuralnetwithmomentum import NeuralNetWithMomentum from aibrite.ml.neuralnetwithrmsprop import NeuralNetWithRMSprop from aibrite.ml.neuralnetwithadam import NeuralNetWithAdam df = pd.read_csv("./data/ex2data1.csv") train_set, dev_set, test_set = NeuralNet.split(df.values, 0.8, 0.1, 0.1) train_x, train_y = train_set[:, 0:-1], train_set[:, -1] dev_x, dev_y = dev_set[:, 0:-1], dev_set[:, -1] test_x, test_y = test_set[:, 0:-1], test_set[:, -1] nn = NeuralNet(train_x, train_y, hidden_layers=(2, 2), iteration_count=6000) train_result = nn.train(lambda nn, iter: print("{0:.2f}".format(iter.cost)) if iter.total_iteration_index % 100 == 0 else None) result = nn.predict(test_x, expected=test_y) print("{0}:\n{1}\n".format(nn, NeuralNet.format_score(result.score)))
import numpy as np import pandas as pd from aibrite.ml.neuralnet import NeuralNet from aibrite.ml.neuralnetwithmomentum import NeuralNetWithMomentum from aibrite.ml.neuralnetwithrmsprop import NeuralNetWithRMSprop from aibrite.ml.neuralnetwithadam import NeuralNetWithAdam df = pd.read_csv("./data/ex2data1.csv") train_set, dev_set, test_set = NeuralNet.split(df.values, 0.8, 0.1, 0.1) train_x, train_y = train_set[:, 0:-1], train_set[:, -1] dev_x, dev_y = dev_set[:, 0:-1], dev_set[:, -1] test_x, test_y = test_set[:, 0:-1], test_set[:, -1] nn = NeuralNet(train_x, train_y, hidden_layers=(2, 2), iteration_count=6000) train_result = nn.train() prediction_result = nn.predict(test_x) report = NeuralNet.score_report(test_y, prediction_result.predicted) print("{0}:\n{1}\n".format(nn, NeuralNet.format_score(report)))