Пример #1
0
 def load_mask(self):
    ''' mask Jcam to isolate the brain from background '''
    if self.absmaskpath:
        print 'loading mask from ' + str(self.absmaskpath)
        mask = tiff.imread(self.absmaskpath) # mask must be 8bit thresholded as 0 & 255
        mask = mask/255
        mask_savepath = self.absmaskpath
    else: # create mask automatically from top %50 pixels in histogram
        if self.img_source == 'npy': #cut off file extension
            mask_savepath = os.path.join(self.savepath, self.filename[:-4]+ '_' + self.special_string + self.maskname)
        else:
            mask_savepath = os.path.join(self.savepath, self.filename+ '_' + self.special_string + self.maskname)
            open_tb = tb.open_file(self.mask_moviepath, 'r')
            mask_mov = open_tb.root.data
        if len(np.shape(mask_mov)) == 2:
            frame = mask_mov[:,:]
        else:
            frame = mask_mov[0,:,:]
        if self.dsfactor != 1:
            frame =  block_reduce(frame, block_size=(self.dsfactor,self.dsfactor), func=np.mean)
        del mask_mov    
        mask = Jcorr.generate_mask(self, frame, 50)           
        #mask_tosave = mask.astype('uint8')
        #mask_tosave = mask_tosave*255 # for historical reasons, the mask is either 0 and 255
        #tiff.imsave(mask_savepath, mask_tosave)
    return mask, mask_savepath
    def get_masks(self):
        ''' load masks '''

        maskpath = os.path.join(self.basepath, self.maskname)

        mask = tiff.imread(
            maskpath)  # mask must be 8bit thresholded as 0 & 255
        mask = mask / 255
        masky = mask.shape[0]
        maskx = mask.shape[1]

        maskpathleft = os.path.join(self.basepath, self.masknameleft)
        maskpathright = os.path.join(self.basepath, self.masknameright)
        maskleft = tiff.imread(maskpathleft)
        maskleft = maskleft / 255
        maskright = tiff.imread(maskpathright)
        maskright = maskright / 255

        return mask, masky, maskx, maskleft, maskright
Пример #3
0
 def get_masks(self):
     ''' load masks '''
     #maskpath = os.path.join(self.basepath,self.maskname)
     #print maskpath
     mask = tiff.imread(
         self.maskname)  # mask must be 8bit thresholded as 0 & 255
     mask = mask / 255
     masky = mask.shape[0]
     maskx = mask.shape[1]
     return mask, masky, maskx
Пример #4
0
 def load_mask(self):
     ''' mask Jcam to isolate the brain from background '''
     if self.importmask:
         mask = tiff.imread(
             self.absmaskpath)  # mask must be 8bit thresholded as 0 & 255
         mask = mask / 255
         mask_savepath = self.absmaskpath
     else:  # create mask automatically from top %50 pixels in histogram
         if self.img_source == 'npy':  #cut off file extension
             mask_savepath = os.path.join(
                 self.savepath, self.filename[:-4] + '_' +
                 self.special_string + self.maskname)
         else:
             mask_savepath = os.path.join(
                 self.savepath,
                 self.filename + '_' + self.special_string + self.maskname)
         mask_mov = Jcorr.load_mov(self, frameNum=1)
         if self.transposed:
             frame = mask_mov[:, 0].reshape(
                 [np.sqrt(mask_mov.shape[0]),
                  np.sqrt(mask_mov.shape[0])])
         else:
             if len(np.shape(mask_mov)) == 2:
                 frame = mask_mov[:, :]
             else:
                 frame = mask_mov[0, :, :]
             if self.dsfactor != 1:
                 frame = block_reduce(frame,
                                      block_size=(self.dsfactor,
                                                  self.dsfactor),
                                      func=np.mean)
         del mask_mov
         mask = Jcorr.generate_mask(self, frame, 50)
         mask_tosave = mask.astype('uint8')
         mask_tosave = mask_tosave * 255  # for historical reasons, the mask is either 0 and 255
         tiff.imsave(mask_savepath, mask_tosave)
     return mask, mask_savepath
Пример #5
0
 def ImportMappingTif(
         self, path
 ):  #used to import tiff stacks, most often with vasculature maps
     imageFile = tiff.imread(path)
     exposureTime = 10
     return imageFile, exposureTime
Пример #6
0
def thresh_corr(all_corr, maskpathleft, maskpathright, corr_thresh):
    maskleft = tiff.imread(maskpathleft)
    maskleft = maskleft / 255
    maskright = tiff.imread(maskpathright)
    maskright = maskright / 255
    all_centroids_l, all_centroids_r, submask_l, submask_r = thresh_corr_centroids(
        all_corr, maskleft, maskright, corr_thresh)

    all_submask = submask_l + submask_r
    all_centroids = np.concatenate((all_centroids_l, all_centroids_r), axis=1)
    if len(corr_thresh) > 1:
        cost, rand_dist = euclidean_cost_centroids(all_centroids, corr_thresh)
    #min_thresh = np.nonzero(cost == np.min(cost[1:-1]))[0].astype('i2') # index of optiminum threshold
    #opt_thresh = corr_thresh[min_thresh] # the actual value of optimum threshold
    opt_thresh = [.75]
    min_thresh = np.nonzero(corr_thresh == opt_thresh)[0]
    opt_centroids = np.squeeze(all_centroids[min_thresh, :, :])

    #pdb.set_trace()
    submask_l, submask_r, l_db_cores, r_db_cores, uber_centroids, all_label_map = cluster_using_DBSCAN(
        np.squeeze(all_centroids_l[min_thresh, :, :]),
        np.squeeze(all_centroids_r[min_thresh, :, :]), maskleft, maskright,
        min_thresh)

    fig5 = plt.figure(figsize=(12, 4))
    fig5.subplots_adjust(left=0,
                         right=1,
                         bottom=0,
                         top=1,
                         hspace=.05,
                         wspace=.05)
    uber_masks = np.zeros([len(uber_centroids), masky, maskx])
    all_corr_mov = all_corr_to_image(all_corr)
    for ii, idx in enumerate(uber_centroids):
        pushmask_idx = masky * idx[0] + idx[1]
        lin_idx = [
            nn for nn in range(pushmask.shape[0])
            if pushmask[nn] == pushmask_idx
        ]
        uber_masks[ii, :, :] = all_corr_mov[lin_idx, :, :]
        uber_masks[uber_masks < opt_thresh] = np.nan
        ax5 = fig5.add_subplot(3, 5, ii, xticks=[], yticks=[])
        ax5.scatter(uber_centroids[ii][1],
                    uber_centroids[ii][0],
                    color='blue',
                    edgecolors='white')
        ax5.imshow(mask, vmin=0, vmax=2, cmap=plt.get_cmap('gray_r'))
        ax5.imshow(uber_masks[ii, :, :], cmap='gnuplot2')

    #pdb.set_trace()
    all_label_map = all_label_map.reshape(
        [all_label_map.shape[0], masky, maskx])
    fig6 = plt.figure(figsize=(12, 4))
    fig6.subplots_adjust(left=0,
                         right=1,
                         bottom=0,
                         top=1,
                         hspace=.05,
                         wspace=.05)
    for ii in range(all_label_map.shape[0]):
        ax6 = fig6.add_subplot(3, 5, ii, xticks=[], yticks=[])
        ax6.scatter(uber_centroids[ii][1],
                    uber_centroids[ii][0],
                    color='blue',
                    edgecolors='white')
        ax6.imshow(mask, vmin=0, vmax=2, cmap=plt.get_cmap('gray_r'))
        ax6.imshow(all_label_map[ii, :, :],
                   vmin=0,
                   vmax=1,
                   cmap=plt.get_cmap('gray_r'))

    fig7 = plt.figure(figsize=(4, 4))
    fig7.subplots_adjust(left=0,
                         right=1,
                         bottom=0,
                         top=1,
                         hspace=.05,
                         wspace=.05)
    ax7 = fig7.add_subplot(1, 1, 1, xticks=[], yticks=[])
    ax7.imshow(np.nanmax(uber_masks, axis=0), cmap='gnuplot2')
    ax7.scatter(zip(*uber_centroids)[1],
                zip(*uber_centroids)[0],
                color='blue',
                edgecolors='white')

    return opt_centroids, all_submask, uber_centroids, uber_masks, all_label_map
Пример #7
0
#    maskspace_predictions[:] = np.nan
#    maskspace_predictions[all_submask] = np.squeeze(predictions[min_bic_idx, :])
#maskspace_predictions[submask_l] = predictions_l # if submasks have overlap (they might depending on how accurently teh submasks are drawn), the left will overwrite the right

#    if SAVE_PLOT:
#        special = '_k=' + str(k) + '_' + gmm_type + '_corr_thresh=' + str(min_thresh)
#        figpath = os.path.join(gmm_path,filename_short+'_centroid_gmm_bics_'+special+timestamp_str[:10])
#        plt.savefig(figpath,  dpi=300, transparent=True)
#        plt.close()
#
#    gmm_centroid_map(pushmask, maskspace_predictions, kays[min_bic_idx], min_thresh, best_k)
#    return best_k

############# load data and mask

mask = tiff.imread(maskpath)  # mask must be 8bit thresholded as 0 & 255
mask = mask / 255
masky = mask.shape[0]
maskx = mask.shape[1]
mask_idx, pullmask, pushmask = mask_to_index(mask)

datalength = [pushmask.shape[0], masky, maskx]

try:  # if "all_corr" is in memory already
    all_corr
except NameError:
    if hdf5_format:
        f = h5py.File(filepath, 'r')
        imported_data = f['all_corr']
        all_corr = np.copy(imported_data)
        #f.close()