Пример #1
0
 def saveImageFile(data, savefile):
     """
     save a numpy matrix as a tiff image
     """
     out = data.astype(np.uint8)
     writer = omeTifWriter.OmeTifWriter(savefile)
     writer.save(out)
Пример #2
0
 def saveImageFileBinary(data, savefile):
     """
     save a numpy matrix as a tiff image in binary format (all non-zero pixels = 255)
     """
     data = data > 0
     out = data.astype(np.uint8)
     out[out > 0] = 255
     writer = omeTifWriter.OmeTifWriter(savefile)
     writer.save(out)
Пример #3
0
def run(path, f3_param=[[1, 0.01]], minArea=20, saveNumber=0):
    """
	use aicssegmentation to pre-process raw data and then make/save a 3D mask
	"""
    print('=== path:', path)

    # load x/y/z voxel size (assumes .tif was saved with Fiji
    xVoxel, yVoxel, zVoxel = readVoxelSize(path)
    print('    xVoxel:', xVoxel, 'yVoxel:', yVoxel, 'zVoxel:', zVoxel)

    # load the data
    reader = AICSImage(path)
    IMG = reader.data.astype(np.float32)
    print('    IMG.shape:', IMG.shape)

    structure_channel = 0
    struct_img0 = IMG[0, structure_channel, :, :, :].copy()

    # give us a guess for our intensity_scaling_param parameters
    #from aicssegmentation.core.pre_processing_utils import suggest_normalization_param
    #suggest_normalization_param(struct_img0)
    low_ratio, high_ratio = my_suggest_normalization_param(struct_img0)

    #intensity_scaling_param = [0.0, 22.5]
    intensity_scaling_param = [low_ratio, high_ratio]
    print('*** intensity_normalization() intensity_scaling_param:',
          intensity_scaling_param)

    # intensity normalization
    print('=== calling intensity_normalization()')
    struct_img = intensity_normalization(struct_img0,
                                         scaling_param=intensity_scaling_param)

    # smoothing with edge preserving smoothing
    print('=== calling edge_preserving_smoothing_3d()')
    structure_img_smooth = edge_preserving_smoothing_3d(struct_img)

    #
    """
	see: notebooks/playground_filament3d.ipynb

	scale_x is set based on the estimated thickness of your target filaments.
		For example, if visually the thickness of the filaments is usually 3~4 pixels,
		then you may want to set scale_x as 1 or something near 1 (like 1.25).
		Multiple scales can be used, if you have filaments of very different thickness.
	cutoff_x is a threshold applied on the actual filter reponse to get the binary result.
		Smaller cutoff_x may yielf more filaments, especially detecting more dim ones and thicker segmentation,
		while larger cutoff_x could be less permisive and yield less filaments and slimmer segmentation.
	"""
    #f3_param = [[1, 0.01]] # [scale_1, cutoff_1]
    print('=== calling filament_3d_wrapper() f3_param:', f3_param)
    bw = filament_3d_wrapper(structure_img_smooth, f3_param)

    #
    #minArea = 20 # from recipe
    print('=== calling remove_small_objects() minArea:', minArea)
    seg = remove_small_objects(bw > 0,
                               min_size=minArea,
                               connectivity=1,
                               in_place=False)

    #
    # save original file again (with saveNumber
    saveNumberStr = ''
    if saveNumber > 1:
        saveNumberStr = '_' + str(saveNumber)

    #
    # save mask
    seg = seg > 0
    out = seg.astype(np.uint8)
    out[out > 0] = 255

    # save _dvMask
    maskPath = os.path.splitext(path)[0] + '_dvMask' + saveNumberStr + '.tif'
    print('=== saving 3D mask [WILL FAIL IF FILE EXISTS] as maskPath:',
          maskPath)
    try:
        writer = omeTifWriter.OmeTifWriter(maskPath)
        writer.save(out)
    except (OSError) as e:
        print('    error: file already exists, di dnot resave, maskPath:',
              maskPath)

    #
    # analyze skeleton, take a 3d mask and analyze as a 1-pixel skeleton
    retDict0, mySkeleton = myAnalyzeSkeleton(out=out, imagePath=path)
    retDict = OrderedDict()
    retDict['tifPath'] = path
    retDict['maskPath'] = maskPath
    retDict['tifFile'] = os.path.basename(path)
    retDict['xVoxel'] = xVoxel
    retDict['yVoxel'] = yVoxel
    retDict['zVoxel'] = zVoxel
    #
    retDict['params'] = OrderedDict()
    retDict['params']['saveNumber'] = saveNumber
    retDict['params'][
        'intensity_scaling_param'] = intensity_scaling_param  # calculated in my_suggest_normalization_param
    retDict['params']['f3_param'] = f3_param[
        0]  # cludge, not sure where to put this. f3_param is a list of list but screws up my .csv output !!!
    retDict['params']['minArea'] = minArea

    retDict.update(retDict0)

    # save 1-pixel skeleton: mySkeleton
    # save _dvSkel
    skelPath = os.path.splitext(path)[0] + '_dvSkel' + saveNumberStr + '.tif'
    print('=== saving 3D skel [WILL FAIL IF FILE EXISTS] as maskPath:',
          skelPath)
    try:
        writer = omeTifWriter.OmeTifWriter(skelPath)
        writer.save(mySkeleton)
    except (OSError) as e:
        print('    error: file already exists, di dnot resave, skelPath:',
              skelPath)

    return retDict
Пример #4
0
    def execute(self, args):

        global draw_mask, ignore_img
        # part 1: do sorting
        df = pd.read_csv(args.csv_name, index_col=False)

        for index, row in df.iterrows():

            if not np.isnan(row['score']) and (row['score'] == 1
                                               or row['score'] == 0):
                continue

            reader = AICSImage(row['raw'])
            im_full = reader.data
            struct_img = im_full[0, args.input_channel, :, :, :]
            raw_img = (struct_img - struct_img.min() +
                       1e-8) / (struct_img.max() - struct_img.min() + 1e-8)
            raw_img = 255 * raw_img
            raw_img = raw_img.astype(np.uint8)

            reader_seg1 = AICSImage(row['seg1'])
            im_seg1_full = reader_seg1.data
            assert im_seg1_full.shape[0] == 1
            assert im_seg1_full.shape[1] == 1 or im_seg1_full.shape[2] == 1
            if im_seg1_full.shape[1] == 1:
                seg1 = im_seg1_full[0, 0, :, :, :] > 0.1
            else:
                seg1 = im_seg1_full[0, :, 0, :, :] > 0.1

            reader_seg2 = AICSImage(row['seg2'])
            im_seg2_full = reader_seg2.data
            assert im_seg2_full.shape[0] == 1
            assert im_seg2_full.shape[1] == 1 or im_seg2_full.shape[2] == 1
            if im_seg2_full.shape[1] == 1:
                seg2 = im_seg2_full[0, 0, :, :, :] > 0
            else:
                seg2 = im_seg2_full[0, :, 0, :, :] > 0

            create_merge_mask(raw_img, seg1.astype(np.uint8),
                              seg2.astype(np.uint8), 'merging_mask')

            if ignore_img:
                df['score'].iloc[index] = 0
            else:
                df['score'].iloc[index] = 1

                mask_fn = args.mask_path + os.sep + os.path.basename(
                    row['raw'])[:-5] + '_mask.tiff'
                crop_mask = np.zeros(seg1.shape, dtype=np.uint8)
                for zz in range(crop_mask.shape[0]):
                    crop_mask[zz, :, :] = draw_mask[:crop_mask.shape[1], :
                                                    crop_mask.shape[2]]

                crop_mask = crop_mask.astype(np.uint8)
                crop_mask[crop_mask > 0] = 255
                writer = omeTifWriter.OmeTifWriter(mask_fn)
                writer.save(crop_mask)
                df['merging_mask'].iloc[index] = mask_fn

                need_mask = input(
                    'Do you need to add an excluding mask for this image, enter y or n:  '
                )
                if need_mask == 'y':
                    create_merge_mask(raw_img, seg1.astype(np.uint8),
                                      seg2.astype(np.uint8), 'excluding mask')

                    mask_fn = args.ex_mask_path + os.sep + os.path.basename(
                        row['raw'])[:-5] + '_mask.tiff'
                    crop_mask = np.zeros(seg1.shape, dtype=np.uint8)
                    for zz in range(crop_mask.shape[0]):
                        crop_mask[zz, :, :] = draw_mask[:crop_mask.shape[1], :
                                                        crop_mask.shape[2]]

                    crop_mask = crop_mask.astype(np.uint8)
                    crop_mask[crop_mask > 0] = 255
                    writer = omeTifWriter.OmeTifWriter(mask_fn)
                    writer.save(crop_mask)
                    df['excluding_mask'].iloc[index] = mask_fn

            df.to_csv(args.csv_name, index=False)

        #########################################
        # generate training data:
        #  (we want to do this step after "sorting"
        #  (is mainly because we want to get the sorting
        #  step as smooth as possible, even though
        #  this may waster i/o time on reloading images)
        # #######################################
        print('finish merging, start building the training data ...')
        existing_files = glob(args.train_path + os.sep + 'img_*.ome.tif')
        print(len(existing_files))

        training_data_count = len(existing_files) // 3
        for index, row in df.iterrows():
            if row['score'] == 1:
                training_data_count += 1

                # load raw image
                reader = AICSImage(row['raw'])
                img = reader.data.astype(np.float32)
                struct_img = input_normalization(
                    img[0, [args.input_channel], :, :, :], args)
                struct_img = struct_img[0, :, :, :]

                reader_seg1 = AICSImage(row['seg1'])
                im_seg1_full = reader_seg1.data
                assert im_seg1_full.shape[0] == 1
                assert im_seg1_full.shape[1] == 1 or im_seg1_full.shape[2] == 1
                if im_seg1_full.shape[1] == 1:
                    seg1 = im_seg1_full[0, 0, :, :, :] > 0.1
                else:
                    seg1 = im_seg1_full[0, :, 0, :, :] > 0.1

                reader_seg2 = AICSImage(row['seg2'])
                im_seg2_full = reader_seg2.data
                assert im_seg2_full.shape[0] == 1
                assert im_seg2_full.shape[1] == 1 or im_seg2_full.shape[2] == 1
                if im_seg2_full.shape[1] == 1:
                    seg2 = im_seg2_full[0, 0, :, :, :] > 0
                else:
                    seg2 = im_seg2_full[0, :, 0, :, :] > 0

                if os.path.isfile(str(row['merging_mask'])):
                    reader = AICSImage(row['merging_mask'])
                    img = reader.data
                    assert img.shape[0] == 1 and img.shape[1] == 1
                    mask = img[0, 0, :, :, :] > 0
                    seg1[mask > 0] = 0
                    seg2[mask == 0] = 0
                    seg1 = np.logical_or(seg1, seg2)

                cmap = np.ones(seg1.shape, dtype=np.float32)
                if os.path.isfile(str(row['excluding_mask'])):
                    reader = AICSImage(row['excluding_mask'])
                    img = reader.data
                    assert img.shape[0] == 1 and img.shape[1] == 1
                    ex_mask = img[0, 0, :, :, :] > 0
                    cmap[ex_mask > 0] = 0

                writer = omeTifWriter.OmeTifWriter(
                    args.train_path + os.sep + 'img_' +
                    f'{training_data_count:03}' + '.ome.tif')
                writer.save(struct_img)

                seg1 = seg1.astype(np.uint8)
                seg1[seg1 > 0] = 1
                writer = omeTifWriter.OmeTifWriter(
                    args.train_path + os.sep + 'img_' +
                    f'{training_data_count:03}' + '_GT.ome.tif')
                writer.save(seg1)

                writer = omeTifWriter.OmeTifWriter(
                    args.train_path + os.sep + 'img_' +
                    f'{training_data_count:03}' + '_CM.ome.tif')
                writer.save(cmap)
        print('training data is ready')
Пример #5
0
    def execute(self, args):

        if not args.data_type.startswith('.'):
            args.data_type = '.' + args.data_type

        filenames = glob(args.raw_path + os.sep + '*' + args.data_type)
        filenames.sort()

        existing_files = glob(args.train_path + os.sep + 'img_*.ome.tif')
        print(len(existing_files))

        training_data_count = len(existing_files) // 3
        for _, fn in enumerate(filenames):

            training_data_count += 1

            # load raw
            reader = AICSImage(fn)
            img = reader.data.astype(np.float32)
            assert img.shape[0] == 1
            img = img[0, :, :, :, :]
            if img.shape[0] > img.shape[1]:
                img = np.transpose(img, (1, 0, 2, 3))
            struct_img = input_normalization(
                img[[args.input_channel], :, :, :], args)

            # load seg
            seg_fn = args.seg_path + os.sep + os.path.basename(
                fn)[:-1 * len(args.data_type)] + '_struct_segmentation.tiff'
            reader = AICSImage(seg_fn)
            img = reader.data
            assert img.shape[0] == 1 and img.shape[1] == 1
            seg = img[0, 0, :, :, :] > 0
            seg = seg.astype(np.uint8)
            seg[seg > 0] = 1

            # excluding mask
            cmap = np.ones(seg.shape, dtype=np.float32)
            mask_fn = args.mask_path + os.sep + os.path.basename(
                fn)[:-1 * len(args.data_type)] + '_mask.tiff'
            if os.path.isfile(mask_fn):
                reader = AICSImage(mask_fn)
                img = reader.data
                assert img.shape[0] == 1 and img.shape[1] == 1
                mask = img[0, 0, :, :, :]
                cmap[mask == 0] = 0

            writer = omeTifWriter.OmeTifWriter(args.train_path + os.sep +
                                               'img_' +
                                               f'{training_data_count:03}' +
                                               '.ome.tif')
            writer.save(struct_img)

            writer = omeTifWriter.OmeTifWriter(args.train_path + os.sep +
                                               'img_' +
                                               f'{training_data_count:03}' +
                                               '_GT.ome.tif')
            writer.save(seg)

            writer = omeTifWriter.OmeTifWriter(args.train_path + os.sep +
                                               'img_' +
                                               f'{training_data_count:03}' +
                                               '_CM.ome.tif')
            writer.save(cmap)
Пример #6
0
def main():

    parser = argparse.ArgumentParser()
    parser.add_argument('--config', required=True)
    args = parser.parse_args()

    config = load_config(args.config)

    # declare the model
    model = build_model(config)

    # load the trained model instance
    model_path = config['model_path']
    print(f'Loading model from {model_path}...')
    load_checkpoint(model_path, model)

    # extract the parameters for preparing the input image
    args_norm = lambda: None
    args_norm.Normalization = config['Normalization']

    # extract the parameters for running the model inference
    args_inference = lambda: None
    args_inference.size_in = config['size_in']
    args_inference.size_out = config['size_out']
    args_inference.OutputCh = config['OutputCh']
    args_inference.nclass = config['nclass']

    # run
    inf_config = config['mode']
    if inf_config['name'] == 'file':
        fn = inf_config['InputFile']
        data_reader = AICSImage(fn)
        img0 = data_reader.data

        if inf_config['timelapse']:
            assert img0.shape[0] > 1

            for tt in range(img0.shape[0]):
                # Assume:  dimensions = TCZYX
                img = img0[tt, config['InputCh'], :, :, :].astype(float)
                img = input_normalization(img, args_norm)

                if len(config['ResizeRatio']) > 0:
                    img = resize(
                        img,
                        (1, config['ResizeRatio'][0], config['ResizeRatio'][1],
                         config['ResizeRatio'][2]),
                        method='cubic')
                    for ch_idx in range(img.shape[0]):
                        struct_img = img[ch_idx, :, :, :]
                        struct_img = (struct_img - struct_img.min()) / (
                            struct_img.max() - struct_img.min())
                        img[ch_idx, :, :, :] = struct_img

                # apply the model
                output_img = model_inference(model, img,
                                             model.final_activation,
                                             args_inference)

                # extract the result and write the output
                if len(config['OutputCh']) == 2:
                    writer = omeTifWriter.OmeTifWriter(
                        config['OutputDir'] + os.sep +
                        pathlib.PurePosixPath(fn).stem + '_T_' + f'{tt:03}' +
                        '_struct_segmentation.tiff')
                    out = output_img[0]
                    out = (out - out.min()) / (out.max() - out.min())
                    if len(config['ResizeRatio']) > 0:
                        out = resize(out, (1.0, 1 / config['ResizeRatio'][0],
                                           1 / config['ResizeRatio'][1],
                                           1 / config['ResizeRatio'][2]),
                                     method='cubic')
                    out = out.astype(np.float32)
                    if config['Threshold'] > 0:
                        out = out > config['Threshold']
                        out = out.astype(np.uint8)
                        out[out > 0] = 255
                    writer.save(out)
                else:
                    for ch_idx in range(len(config['OutputCh']) // 2):
                        writer = omeTifWriter.OmeTifWriter(
                            config['OutputDir'] + os.sep +
                            pathlib.PurePosixPath(fn).stem + '_T_' +
                            f'{tt:03}' + '_seg_' +
                            str(config['OutputCh'][2 * ch_idx]) + '.tiff')
                        out = output_img[ch_idx]
                        out = (out - out.min()) / (out.max() - out.min())
                        if len(config['ResizeRatio']) > 0:
                            out = resize(out,
                                         (1.0, 1 / config['ResizeRatio'][0],
                                          1 / config['ResizeRatio'][1],
                                          1 / config['ResizeRatio'][2]),
                                         method='cubic')
                        out = out.astype(np.float32)
                        if config['Threshold'] > 0:
                            out = out > config['Threshold']
                            out = out.astype(np.uint8)
                            out[out > 0] = 255
                        writer.save(out)
        else:
            img = img0[0, :, :, :, :].astype(float)
            print(f'processing one image of size {img.shape}')
            if img.shape[1] < img.shape[0]:
                img = np.transpose(img, (1, 0, 2, 3))
            img = img[config['InputCh'], :, :, :]
            img = input_normalization(img, args_norm)

            if len(config['ResizeRatio']) > 0:
                img = resize(
                    img, (1, config['ResizeRatio'][0],
                          config['ResizeRatio'][1], config['ResizeRatio'][2]),
                    method='cubic')
                for ch_idx in range(img.shape[0]):
                    struct_img = img[
                        ch_idx, :, :, :]  # note that struct_img is only a view of img, so changes made on struct_img also affects img
                    struct_img = (struct_img - struct_img.min()) / (
                        struct_img.max() - struct_img.min())
                    img[ch_idx, :, :, :] = struct_img

            # apply the model
            output_img = model_inference(model, img, model.final_activation,
                                         args_inference)

            # extract the result and write the output
            if len(config['OutputCh']) == 2:
                out = output_img[0]
                out = (out - out.min()) / (out.max() - out.min())
                if len(config['ResizeRatio']) > 0:
                    out = resize(out, (1.0, 1 / config['ResizeRatio'][0],
                                       1 / config['ResizeRatio'][1],
                                       1 / config['ResizeRatio'][2]),
                                 method='cubic')
                out = out.astype(np.float32)
                print(out.shape)
                if config['Threshold'] > 0:
                    out = out > config['Threshold']
                    out = out.astype(np.uint8)
                    out[out > 0] = 255
                writer = omeTifWriter.OmeTifWriter(
                    config['OutputDir'] + os.sep +
                    pathlib.PurePosixPath(fn).stem +
                    '_struct_segmentation.tiff')
                writer.save(out)
            else:
                for ch_idx in range(len(config['OutputCh']) // 2):
                    out = output_img[ch_idx]
                    out = (out - out.min()) / (out.max() - out.min())
                    if len(config['ResizeRatio']) > 0:
                        out = resize(out, (1.0, 1 / config['ResizeRatio'][0],
                                           1 / config['ResizeRatio'][1],
                                           1 / config['ResizeRatio'][2]),
                                     method='cubic')
                    out = out.astype(np.float32)
                    if config['Threshold'] > 0:
                        out = out > config['Threshold']
                        out = out.astype(np.uint8)
                        out[out > 0] = 255
                    writer = omeTifWriter.OmeTifWriter(
                        config['OutputDir'] + os.sep +
                        pathlib.PurePosixPath(fn).stem + '_seg_' +
                        str(config['OutputCh'][2 * ch_idx]) + '.tiff')
                    writer.save(out)
            print(f'Image {fn} has been segmented')

    elif inf_config['name'] == 'folder':
        from glob import glob
        filenames = glob(inf_config['InputDir'] + '/*' +
                         inf_config['DataType'])
        filenames.sort()
        #print(filenames)

        for _, fn in enumerate(filenames):

            # load data
            data_reader = AICSImage(fn)
            img0 = data_reader.data
            img = img0[0, :, :, :, :].astype(float)
            if img.shape[1] < img.shape[0]:
                img = np.transpose(img, (1, 0, 2, 3))
            img = img[config['InputCh'], :, :, :]
            img = input_normalization(img, args_norm)
            #img = image_normalization(img, config['Normalization'])

            if len(config['ResizeRatio']) > 0:
                img = resize(
                    img, (1, config['ResizeRatio'][0],
                          config['ResizeRatio'][1], config['ResizeRatio'][2]),
                    method='cubic')
                for ch_idx in range(img.shape[0]):
                    struct_img = img[
                        ch_idx, :, :, :]  # note that struct_img is only a view of img, so changes made on struct_img also affects img
                    struct_img = (struct_img - struct_img.min()) / (
                        struct_img.max() - struct_img.min())
                    img[ch_idx, :, :, :] = struct_img

            # apply the model
            output_img = model_inference(model, img, model.final_activation,
                                         args_inference)

            # extract the result and write the output
            if len(config['OutputCh']) == 2:
                writer = omeTifWriter.OmeTifWriter(
                    config['OutputDir'] + os.sep +
                    pathlib.PurePosixPath(fn).stem +
                    '_struct_segmentation.tiff')
                if config['Threshold'] < 0:
                    out = output_img[0]
                    out = (out - out.min()) / (out.max() - out.min())
                    print(out.shape)
                    if len(config['ResizeRatio']) > 0:
                        out = resize(out, (1.0, 1 / config['ResizeRatio'][0],
                                           1 / config['ResizeRatio'][1],
                                           1 / config['ResizeRatio'][2]),
                                     method='cubic')
                    out = out.astype(np.float32)
                    out = (out - out.min()) / (out.max() - out.min())
                    writer.save(out)
                else:
                    out = remove_small_objects(
                        output_img[0] > config['Threshold'],
                        min_size=2,
                        connectivity=1)
                    out = out.astype(np.uint8)
                    out[out > 0] = 255
                    writer.save(out)
            else:
                for ch_idx in range(len(config['OutputCh']) // 2):
                    writer = omeTifWriter.OmeTifWriter(
                        config['OutputDir'] + os.sep +
                        pathlib.PurePosixPath(fn).stem + '_seg_' +
                        str(config['OutputCh'][2 * ch_idx]) + '.ome.tif')
                    if config['Threshold'] < 0:
                        out = output_img[ch_idx]
                        out = (out - out.min()) / (out.max() - out.min())
                        writer.save(out.astype(np.float32))
                    else:
                        out = output_img[ch_idx] > config['Threshold']
                        out = out.astype(np.uint8)
                        out[out > 0] = 255
                        writer.save(out)

            print(f'Image {fn} has been segmented')
Пример #7
0
def evaluate(args, model):

    model.eval()
    softmax = nn.Softmax(dim=1)
    softmax.cuda()

    # check validity of parameters
    assert args.nchannel == len(
        args.InputCh
    ), f'number of input channel does not match input channel indices'

    if args.mode == 'eval':

        filenames = glob.glob(args.InputDir + '/*' + args.DataType)
        filenames.sort()

        for fi, fn in enumerate(filenames):
            print(fn)
            # load data
            struct_img = load_single_image(args, fn, time_flag=False)

            print(struct_img.shape)

            # apply the model
            output_img = apply_on_image(model, struct_img, softmax, args)
            #output_img = model_inference(model, struct_img, softmax, args)

            #print(len(output_img))

            for ch_idx in range(len(args.OutputCh) // 2):
                write = omeTifWriter.OmeTifWriter(
                    args.OutputDir + pathlib.PurePosixPath(fn).stem + '_seg_' +
                    str(args.OutputCh[2 * ch_idx]) + '.ome.tif')
                if args.Threshold < 0:
                    write.save(output_img[ch_idx].astype(float))
                else:
                    out = output_img[ch_idx] > args.Threshold
                    out = out.astype(np.uint8)
                    out[out > 0] = 255
                    write.save(out)

            print(f'Image {fn} has been segmented')

    elif args.mode == 'eval_file':

        fn = args.InputFile
        print(fn)
        data_reader = AICSImage(fn)
        img0 = data_reader.data
        if args.timelapse:
            assert data_reader.shape[0] > 1

            for tt in range(data_reader.shape[0]):
                # Assume:  TCZYX
                img = img0[tt, args.InputCh, :, :, :].astype(float)
                img = input_normalization(img, args)

                if len(args.ResizeRatio) > 0:
                    img = resize(img,
                                 (1, args.ResizeRatio[0], args.ResizeRatio[1],
                                  args.ResizeRatio[2]),
                                 method='cubic')
                    for ch_idx in range(img.shape[0]):
                        struct_img = img[
                            ch_idx, :, :, :]  # note that struct_img is only a view of img, so changes made on struct_img also affects img
                        struct_img = (struct_img - struct_img.min()) / (
                            struct_img.max() - struct_img.min())
                        img[ch_idx, :, :, :] = struct_img

                # apply the model
                output_img = model_inference(model, img, softmax, args)

                for ch_idx in range(len(args.OutputCh) // 2):
                    writer = omeTifWriter.OmeTifWriter(
                        args.OutputDir + pathlib.PurePosixPath(fn).stem +
                        '_T_' + f'{tt:03}' + '_seg_' +
                        str(args.OutputCh[2 * ch_idx]) + '.ome.tif')
                    if args.Threshold < 0:
                        out = output_img[ch_idx].astype(float)
                        out = resize(
                            out,
                            (1.0, 1 / args.ResizeRatio[0],
                             1 / args.ResizeRatio[1], 1 / args.ResizeRatio[2]),
                            method='cubic')
                        writer.save(out)
                    else:
                        out = output_img[ch_idx] > args.Threshold
                        out = resize(
                            out,
                            (1.0, 1 / args.ResizeRatio[0],
                             1 / args.ResizeRatio[1], 1 / args.ResizeRatio[2]),
                            method='nearest')
                        out = out.astype(np.uint8)
                        out[out > 0] = 255
                        writer.save(out)
        else:
            img = img0[0, :, :, :].astype(float)
            if img.shape[1] < img.shape[0]:
                img = np.transpose(img, (1, 0, 2, 3))
            img = img[args.InputCh, :, :, :]
            img = input_normalization(img, args)

            if len(args.ResizeRatio) > 0:
                img = resize(img, (1, args.ResizeRatio[0], args.ResizeRatio[1],
                                   args.ResizeRatio[2]),
                             method='cubic')
                for ch_idx in range(img.shape[0]):
                    struct_img = img[
                        ch_idx, :, :, :]  # note that struct_img is only a view of img, so changes made on struct_img also affects img
                    struct_img = (struct_img - struct_img.min()) / (
                        struct_img.max() - struct_img.min())
                    img[ch_idx, :, :, :] = struct_img

            # apply the model
            output_img = model_inference(model, img, softmax, args)

            for ch_idx in range(len(args.OutputCh) // 2):
                writer = omeTifWriter.OmeTifWriter(
                    args.OutputDir + pathlib.PurePosixPath(fn).stem + '_seg_' +
                    str(args.OutputCh[2 * ch_idx]) + '.ome.tif')
                if args.Threshold < 0:
                    writer.save(output_img[ch_idx].astype(float))
                else:
                    out = output_img[ch_idx] > args.Threshold
                    out = out.astype(np.uint8)
                    out[out > 0] = 255
                    writer.save(out)

        print(f'Image {fn} has been segmented')