Пример #1
0
def main():
    """
    Demo how to run an agent
    """
    if( len(sys.argv) > 1 ):
        configName = str(sys.argv[1])
        filename = configName
    else:
        print("Default config ")
        configName = "./configs/new_traffic_loop_ppo.yaml"
        dirname = os.path.dirname(__file__)
        filename = os.path.join(dirname, configName)

    print( "Config name " + configName )
    logging.info("Starting example PPO agent")
    logoutput = io.StringIO("episode output log")
    parameters = getParameters(filename)

    env = SumoGymAdapter(parameters['all'])

    # here we initialize all agents (in that case one)
    PPOAgents = []
    env.reset()
    for intersectionId in env.action_space.spaces.keys():
        PPOAgents.append(PPOAgent(agentId=intersectionId, environment=env, parameters=parameters['all']))
    complexAgent = BasicComplexAgent(PPOAgents)

    experiment = Experiment(complexAgent, env, parameters['all']['max_steps'], parameters['all']['seedlist'], render=False)
    experiment.addListener(JsonLogger(logoutput))
    experiment.run()
Пример #2
0
def main():
    """
    Demo how to run an agent
    """
    # if( len(sys.argv) > 1 ):
    #     configName = str(sys.argv[1])
    #     filename = configName
    # else:
    #     print("Default config ")
    #     configName = "./configs/new_traffic_loop_ppo.yaml"
    #     dirname = os.path.dirname(__file__)
    #     filename = os.path.join(dirname, configName)

    # print( "Config name " + configName )
    logging.info("Starting example random agent")
    logoutput = io.StringIO("episode output log")
    # parameters = getParameters(filename)

    env = Warehouse()
    # here we initialize all agents (in that case one)
    randomAgents = []
    env.reset()
    for agent_id in env.action_space.spaces.keys():
        randomAgents.append(WarehouseNaiveAgent(robot_id=agent_id, env=env))
    complexAgent = BasicComplexAgent(randomAgents)
    experiment = Experiment(complexAgent,
                            env,
                            maxSteps=100,
                            render=True,
                            renderDelay=0.5)
    experiment.addListener(JsonLogger(logoutput))
    experiment.run()
Пример #3
0
def main():
    """
    Demo how to run an agent
    """
    dirname = os.path.dirname(__file__)

    if (len(sys.argv) > 1):
        env_configName = str(sys.argv[1])
        agent_configName = str(sys.argv[2])

    else:
        print("Default config ")
        env_configName = "./configs/factory_floor_experiment.yaml"
        env_filename = os.path.join(dirname, env_configName)
        agent_configName = "./configs/agent_combined_config.yaml"
        agent_filename = os.path.join(dirname, agent_configName)

    env_parameters = getParameters(env_filename)
    agent_parameters = getParameters(agent_filename)

    # whao, you need to know exact contents of all files here..
    recursive_update(
        agent_parameters['subAgentList'][0]['parameters']['simulator'],
        env_parameters['environment'])

    print(env_parameters)
    print(agent_parameters)

    random.seed(env_parameters['seed'])
    maxSteps = env_parameters['max_steps']
    baseEnv = FactoryFloor(env_parameters['environment'])
    packedActionSpace = PackedSpace(baseEnv.action_space,
                                    {"robots": ["robot1", "robot2", "robot3"]})
    env = ModifiedGymEnv(baseEnv, packedActionSpace)

    logging.info("Starting example MCTS agent")
    logoutput = io.StringIO("episode output log")

    try:
        logoutputpickle = open('./' + os.environ["SLURM_JOB_ID"] + '.pickle',
                               'wb')
    except KeyError:
        print("No SLURM_JOB_ID found")
        logoutputpickle = io.BytesIO()

    obs = env.reset()
    complexAgent = createAgent(env.action_space, env.observation_space,
                               agent_parameters)

    experiment = Experiment(complexAgent, env, maxSteps, render=True)
    experiment.addListener(JsonLogger(logoutput))
    experiment.addListener(PickleLogger(logoutputpickle))
    stats, confidence_ints = experiment.run()
    logoutputpickle.close()

    print("json output:", logoutput.getvalue())

    print("\n\nREWARD STATS: " + str(stats) + " \nCONFIDENCE INTERVALS " +
          str(confidence_ints))
    def testRun1step(self):
        agent = Mock()
        env = Mock()
        # each episode succeeds in step 1
        env.step = Mock(return_value=('observation', 3.0, True, {}))
        firstAction = Mock()
        exp = Experiment(agent, env, 100, None, False, 0)
        result = np.mean(exp.run())

        self.assertEqual(3.0, result)
Пример #5
0
    def testListener(self):
        agent = Mock()
        env = Mock()
        env.step = Mock(return_value=('observation', 3.0, True, {}))
        firstAction = Mock()
        exp = Experiment(agent, env, 30, None, False, 0)

        listener = Mock()
        exp.addListener(listener)
        result = exp.run()
        # check we got 30 callbacks
        self.assertEquals(30, len(listener.notifyChange.mock_calls))
    def testListener(self):
        agent = Mock()
        env = Mock()
        env.step = Mock(return_value=('observation', 3.0, True, {}))
        firstAction = Mock()
        exp = Experiment(agent, env, 30, None, False, 0)

        listener = Mock()
        exp.addListener(listener)
        result = exp.run()
        # check we got 30 callbacks
        # This fails because Jinke added an entry to the notification dictionary in Experiment.py
        self.assertEquals(30, len(listener.notifyChange.mock_calls))
Пример #7
0
def main():
    if (len(sys.argv) > 1):
        configName = str(sys.argv[1])
        filename = configName
    else:
        print("Default config ")
        configName = "../configs/PPO.yaml"
        dirname = os.path.dirname(__file__)
        filename = os.path.join(dirname, configName)

    logging.info("Starting example warehouse DQN agent")
    logoutput = io.StringIO("episode output log")
    parameters = getParameters(filename)

    env = Warehouse()
    # here we initialize all agents (in that case one)
    agents = []
    env.reset()
    for agent_id, action_space in env.action_space.spaces.items():
        agents.append(
            WarehouseNaiveAgent(robot_id=agent_id,
                                actionspace=action_space,
                                observationspace=env.observation_space))
    breakpoint()
    agents[20] = PPOAgent(agentId=20,
                          actionspace=env.action_space[20],
                          observationspace=env.observation_space,
                          parameters=parameters['all'])
    multi_agent = MultiAgent(agents)
    experiment = Experiment(
        multi_agent,
        env,
        maxSteps=1e6,
        render=True,
        seedlist=[random.randrange(1, 1e3, 1) for i in range(int(1e5))],
        renderDelay=0.5)
    experiment.addListener(JsonLogger(logoutput))
    experiment.run()
    def testRun3steps(self):
        agent = Mock()
        env = Mock()

        env.step = Mock()
        # each episode succeeds after 3 steps, then restart 10*
        env.step.side_effect = [('observation1', 3.0, False, {}),
                                ('observation2', 4.0, False, {}),
                                ('observation3', 5.0, True, {})] * 10
        firstAction = Mock()
        exp = Experiment(agent, env, 30, None, False, 0)
        result = np.mean(exp.run())
        # each episode has reward 12
        self.assertEqual(12.0, result)
Пример #9
0
    def test_PPO_agent(self):
        logging.info("Starting test_PPO_agent")
        dirname = os.path.dirname(__file__)
        filename = os.path.join(dirname, "configs/new_traffic_loop_ppo.yaml")

        with open(filename, 'r') as stream:
            try:
                parameters = yaml.safe_load(stream)['parameters']
            except yaml.YAMLError as exc:
                logging.error(exc)

        env = SumoGymAdapter(parameters)
        env.reset()

        PPOAgents = []
        for intersectionId in env.action_space.spaces.keys():
            PPOAgents.append(
                PPOAgent(intersectionId, env.action_space,
                         env.observation_space, parameters))

        complexAgent = BasicComplexAgent(PPOAgents, env.action_space,
                                         env.observation_space)
        experiment = Experiment(complexAgent, env, parameters['max_steps'])
        experiment.run()
Пример #10
0
def main():
    """
    MCTS Factory Floor experiment
    """
    dirname = os.path.dirname(__file__)

    parser = configargparse.ArgParser()
    parser.add('-e',
               '--env-config',
               dest="env_filename",
               default=os.path.join(
                   dirname, "./debug_configs/factory_floor_experiment.yaml"))
    parser.add('-a',
               '--agent-config',
               dest="agent_filename",
               default=os.path.join(dirname,
                                    "./debug_configs/agent_config.yaml"))
    parser.add('-d', '--data-dirname', dest="data_dirname", default="data")

    args = parser.parse_args()

    try:
        data_outputdir = os.path.join(
            dirname,
            "./" + args.data_dirname + "/" + os.environ["SLURM_JOB_ID"])
        os.makedirs(data_outputdir)
        logoutputpickle = open('./' + data_outputdir + '/output.pickle', 'wb')
        rewardsFile = open('./' + data_outputdir + '/rewards.yaml', 'w+')
    except KeyError:
        print("No SLURM_JOB_ID found")
        logoutputpickle = io.BytesIO()
        rewardsFile = io.StringIO()

    env_parameters = getParameters(args.env_filename)
    agent_parameters = getParameters(args.agent_filename)

    print(env_parameters)
    print(agent_parameters)
    for subAgent in agent_parameters["subAgentList"]:
        subAgent["parameters"]["simulator"] = env_parameters["environment"]
        subAgent["parameters"]["simulator"][
            "fullname"] = "aienvs.FactoryFloor.FactoryFloor.FactoryFloor"

    random.seed(env_parameters['seed'])
    maxSteps = env_parameters['max_steps']
    env = FactoryFloor(env_parameters['environment'])

    logging.info("Starting example MCTS agent")
    logoutput = io.StringIO("episode output log")

    obs = env.reset()

    complexAgent = createAgent(env.action_space, env.observation_space,
                               agent_parameters)

    experiment = Experiment(complexAgent, env, maxSteps, render=False)
    experiment.addListener(JsonLogger(logoutput))
    experiment.addListener(PickleLogger(logoutputpickle))
    rewards = experiment.run()
    #   statistics, confidence_ints = stats.describe(rewards), stats.bayes_mvs(rewards)
    logoutputpickle.close()

    yaml.dump(rewards, rewardsFile)
    rewardsFile.close()

    print("json output:", logoutput.getvalue())
    print("\n\nREWARD STATS: " + str(statistics) + " \nCONFIDENCE INTERVALS " +
          str(confidence_ints))