Пример #1
0
 def remove_component(X):
     """Remove components of already obtained eigen vectors from X."""
     X_m = X[:m]
     X_n = X[m:]
     for eivec in eivec_m:
         coeff = dotproduct(X_m, eivec)
         X_m = [x1 - coeff * x2 for x1, x2 in zip(X_m, eivec)]
     for eivec in eivec_n:
         coeff = dotproduct(X_n, eivec)
         X_n = [x1 - coeff * x2 for x1, x2 in zip(X_n, eivec)]
     return X_m + X_n
Пример #2
0
    def predict(example):
        o_nodes = learned_net[1]

        # Forward pass
        for node in o_nodes:
            in_val = dotproduct(example, node.weights)
            node.value = node.activation(in_val)

        # Hypothesis
        return find_max_node(o_nodes)
Пример #3
0
def LinearLearner(dataset, learning_rate=0.01, epochs=100):
    """Define with learner = LinearLearner(data); infer with learner(x)."""
    idx_i = dataset.inputs
    idx_t = dataset.target  # As of now, dataset.target gives only one index.
    examples = dataset.examples
    num_examples = len(examples)

    # X transpose
    X_col = [dataset.values[i] for i in idx_i]  # vertical columns of X

    # Add dummy
    ones = [1 for _ in range(len(examples))]
    X_col = [ones] + X_col

    # Initialize random weigts
    num_weights = len(idx_i) + 1
    w = random_weights(min_value=-0.5, max_value=0.5, num_weights=num_weights)

    for epoch in range(epochs):
        err = []
        # Pass over all examples
        for example in examples:
            x = [1] + example
            y = dotproduct(w, x)
            t = example[idx_t]
            err.append(t - y)

        # update weights
        for i in range(len(w)):
            w[i] = w[i] + learning_rate * (dotproduct(err, X_col[i]) /
                                           num_examples)

    def predict(example):
        x = [1] + example
        return dotproduct(w, x)

    return predict
Пример #4
0
    def predict(example):
        # Input nodes
        i_nodes = learned_net[0]

        # Activate input layer
        for v, n in zip(example, i_nodes):
            n.value = v

        # Forward pass
        for layer in learned_net[1:]:
            for node in layer:
                inc = [n.value for n in node.inputs]
                in_val = dotproduct(inc, node.weights)
                node.value = node.activation(in_val)

        # Hypothesis
        o_nodes = learned_net[-1]
        prediction = find_max_node(o_nodes)
        return prediction
Пример #5
0
 def predict(example):
     x = [1] + example
     return dotproduct(w, x)
Пример #6
0
def BackPropagationLearner(dataset,
                           net,
                           learning_rate,
                           epochs,
                           activation=sigmoid):
    """[Figure 18.23] The back-propagation algorithm for multilayer networks"""
    # Initialise weights
    for layer in net:
        for node in layer:
            node.weights = random_weights(min_value=-0.5,
                                          max_value=0.5,
                                          num_weights=len(node.weights))

    examples = dataset.examples
    '''
    As of now dataset.target gives an int instead of list,
    Changing dataset class will have effect on all the learners.
    Will be taken care of later.
    '''
    o_nodes = net[-1]
    i_nodes = net[0]
    o_units = len(o_nodes)
    idx_t = dataset.target
    idx_i = dataset.inputs
    n_layers = len(net)

    inputs, targets = init_examples(examples, idx_i, idx_t, o_units)

    for epoch in range(epochs):
        # Iterate over each example
        for e in range(len(examples)):
            i_val = inputs[e]
            t_val = targets[e]

            # Activate input layer
            for v, n in zip(i_val, i_nodes):
                n.value = v

            # Forward pass
            for layer in net[1:]:
                for node in layer:
                    inc = [n.value for n in node.inputs]
                    in_val = dotproduct(inc, node.weights)
                    node.value = node.activation(in_val)

            # Initialize delta
            delta = [[] for _ in range(n_layers)]

            # Compute outer layer delta

            # Error for the MSE cost function
            err = [t_val[i] - o_nodes[i].value for i in range(o_units)]

            # The activation function used is relu or sigmoid function
            if node.activation == sigmoid:
                delta[-1] = [
                    sigmoid_derivative(o_nodes[i].value) * err[i]
                    for i in range(o_units)
                ]
            elif node.activation == relu:
                delta[-1] = [
                    relu_derivative(o_nodes[i].value) * err[i]
                    for i in range(o_units)
                ]
            elif node.activation == tanh:
                delta[-1] = [
                    tanh_derivative(o_nodes[i].value) * err[i]
                    for i in range(o_units)
                ]
            elif node.activation == elu:
                delta[-1] = [
                    elu_derivative(o_nodes[i].value) * err[i]
                    for i in range(o_units)
                ]
            else:
                delta[-1] = [
                    leaky_relu_derivative(o_nodes[i].value) * err[i]
                    for i in range(o_units)
                ]

            # Backward pass
            h_layers = n_layers - 2
            for i in range(h_layers, 0, -1):
                layer = net[i]
                h_units = len(layer)
                nx_layer = net[i + 1]

                # weights from each ith layer node to each i + 1th layer node
                w = [[node.weights[k] for node in nx_layer]
                     for k in range(h_units)]

                if activation == sigmoid:
                    delta[i] = [
                        sigmoid_derivative(layer[j].value) *
                        dotproduct(w[j], delta[i + 1]) for j in range(h_units)
                    ]
                elif activation == relu:
                    delta[i] = [
                        relu_derivative(layer[j].value) *
                        dotproduct(w[j], delta[i + 1]) for j in range(h_units)
                    ]
                elif activation == tanh:
                    delta[i] = [
                        tanh_derivative(layer[j].value) *
                        dotproduct(w[j], delta[i + 1]) for j in range(h_units)
                    ]
                elif activation == elu:
                    delta[i] = [
                        elu_derivative(layer[j].value) *
                        dotproduct(w[j], delta[i + 1]) for j in range(h_units)
                    ]
                else:
                    delta[i] = [
                        leaky_relu_derivative(layer[j].value) *
                        dotproduct(w[j], delta[i + 1]) for j in range(h_units)
                    ]

            #  Update weights
            for i in range(1, n_layers):
                layer = net[i]
                inc = [node.value for node in net[i - 1]]
                units = len(layer)
                for j in range(units):
                    layer[j].weights = vector_add(
                        layer[j].weights,
                        scalar_vector_product(learning_rate * delta[i][j],
                                              inc))

    return net