Пример #1
0
    def fit(self, training_data_file, training_label_file, num_classes, pixel):
        train_set = read_data_sets(training_data_file, training_label_file,
                                   num_classes=num_classes, one_hot=True)
        self.session = tf.InteractiveSession()

        # Create the model
        self.x = tf.placeholder(tf.float32, [None, pixel])
        self.W = tf.Variable(tf.zeros([pixel, num_classes]))
        self.b = tf.Variable(tf.zeros([num_classes]))
        self.y = tf.nn.softmax(tf.matmul(self.x, self.W) + self.b)

        # Define loss and optimizer
        y_ = tf.placeholder(tf.float32, [None, num_classes])
        cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(self.y), reduction_indices=[1]))
        train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)

        # Train
        tf.initialize_all_variables().run()
        for i in range(1000):
            batch_xs, batch_ys = train_set.next_batch(200)
            train_step.run({self.x: batch_xs, y_: batch_ys})
Пример #2
0

def png_to_features(filename):
    width, height, pngdata, meta = png.Reader(filename).asDirect()
    image = padding(13, 16, (width, height, numpy.vstack(map(numpy.uint8, pngdata))))
    image = image.reshape((1, 13 * 16))
    image = image.astype(numpy.float32)
    image = numpy.multiply(image, 1.0 / 255.0)
    return image


if __name__ == '__main__':
    num_classes = 9
    pixel = 208

    train_set = read_data_sets('/home/zhou/train.gz',
                               '/home/zhou/train_label.gz', num_classes=num_classes, one_hot=True)
    # test_set = read_data_sets('/home/zhou/test.gz')
    sess = tf.InteractiveSession()

    # Create the model
    x = tf.placeholder(tf.float32, [None, pixel])
    W = tf.Variable(tf.zeros([pixel, num_classes]))
    b = tf.Variable(tf.zeros([num_classes]))
    y = tf.nn.softmax(tf.matmul(x, W) + b)

    # Define loss and optimizer
    y_ = tf.placeholder(tf.float32, [None, num_classes])
    cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
    train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)

    # Train