# launch sagemaker hyperparameter job and wait until it completes
tune_model_task = SageMakerTuningOperator(task_id='model_tuning',
                                          dag=dag,
                                          config=tuner_config,
                                          aws_conn_id='airflow-sagemaker',
                                          wait_for_completion=True,
                                          check_interval=30)

# launch sagemaker batch transform job and wait until it completes
batch_transform_task = SageMakerTransformOperator(
    task_id='predicting',
    dag=dag,
    config=transform_config,
    aws_conn_id='airflow-sagemaker',
    wait_for_completion=True,
    check_interval=30,
    trigger_rule=TriggerRule.ONE_SUCCESS)

cleanup_task = DummyOperator(task_id='cleaning_up', dag=dag)

# set the dependencies between tasks

init.set_downstream(preprocess_task)
preprocess_task.set_downstream(prepare_task)
prepare_task.set_downstream(branching)
branching.set_downstream(tune_model_task)
branching.set_downstream(train_model_task)
tune_model_task.set_downstream(batch_transform_task)
train_model_task.set_downstream(batch_transform_task)
batch_transform_task.set_downstream(cleanup_task)
Пример #2
0
        'region': region,
        'bucket': bucket
    })

# launch sagemaker batch transform job and wait until it completes
batch_transform_task = SageMakerTransformOperator(
    task_id='batch_predicting',
    dag=dag,
    config=transform_config,
    aws_conn_id='airflow-sagemaker',
    wait_for_completion=True,
    check_interval=30)

# Cleanup task, deletes ALL SageMaker endpoints and model artifacts
# Uncomment below clean_up_task to clean up sagemaker endpoint resources and model artifacts

# clean_up_task = PythonOperator(
#    task_id='clean_up',
#    dag=dag,
#    python_callable=clean_up.clean_up,
#    op_kwargs={'region': region, "bucket": bucket}
# )

init.set_downstream(sm_proc_job_task)
sm_proc_job_task.set_downstream(train_model_task)
train_model_task.set_downstream(inference_pipeline_task)
inference_pipeline_task.set_downstream(batch_transform_task)
# Uncomment line below to disable clean up task

# batch_transform_task.set_downstream(clean_up_task)
Пример #3
0
#     check_interval=30
# )

# # launch sagemaker batch transform job and wait until it completes
# batch_transform_task = SageMakerTransformOperator(
#     task_id='predicting',
#     dag=dag,
#     config=transform_config,
#     aws_conn_id='airflow-sagemaker',
#     wait_for_completion=True,
#     check_interval=30,
#     trigger_rule=TriggerRule.ONE_SUCCESS
# )

cleanup_task = DummyOperator(
    task_id='cleaning_up',
    dag=dag)

# set the dependencies between tasks

# init.set_downstream(preprocess_task)
# preprocess_task.set_downstream(prepare_task)
# prepare_task.set_downstream(branching)
# branching.set_downstream(tune_model_task)
# branching.set_downstream(train_model_task)
# tune_model_task.set_downstream(batch_transform_task)
# train_model_task.set_downstream(batch_transform_task)
# batch_transform_task.set_downstream(cleanup_task)
init.set_downstream(train_model_task)
train_model_task.set_downstream(cleanup_task)