Пример #1
0
    def net_inference(self, request):
        assert isinstance(request, pb.InferenceRequest)
        img = load_imagev2(request.data.body)
        assert img.ndim == 3  # TODO
        img_height, img_width, _ = img.shape
        img_cls = cls_preProcessImage(img)
        img_det = det_preProcessImage(img)
        forward_req = {'img_cls': img_cls, 'img_det': img_det}
        msg = pb.ForwardMsg(network_input_buf=cPickle.dumps(
            forward_req, protocol=cPickle.HIGHEST_PROTOCOL),
                            reqid=request.reqid)
        msg_out = self.inference_req.inference_msg(msg)
        output = cPickle.loads(msg_out.network_output_buf)
        image_index = json.loads(
            msg_out.meta['data'].decode('utf8'))['image_index']

        cls_result = cls_post_eval(output['output_fine'],
                                   output['output_coarse'], image_index,
                                   self.cls_model)
        det_result = det_post_eval(img_height, img_width, output['output_det'],
                                   self.det_label_dict, image_index)

        cls_result = cls_merge_det(cls_result, det_result, self.cls_model,
                                   self.det_model)
        cls_result = merge_confidences(cls_result, self.cls_model)

        resp = postProcess(cls_result, det_result, self.det_model)
        return pb.InferenceResponse(code=200, result=json.dumps(resp))
Пример #2
0
def _load_image(body, width, height, mean_value, std_value):
    img = load_imagev2(body)
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    img = img.astype(np.float32)
    img = cv2.resize(img, (width, height))
    img -= mean_value
    img /= std_value
    img = np.swapaxes(img, 0, 2)
    img = np.swapaxes(img, 1, 2)
    return img
Пример #3
0
    def net_inference(self, request):
        classes_dict = self.labels['class']
        threshold_dict = self.labels['minMt']  # minModelThreshold
        assert isinstance(request, pb.InferenceRequest)

        img = load_imagev2(request.data.body)
        assert img.ndim == 3  # TODO

        nms = py_nms_wrapper(config.TEST.NMS)

        if img.shape[0] > img.shape[1]:
            long_side, short_side = img.shape[0], img.shape[1]
        else:
            long_side, short_side = img.shape[1], img.shape[0]

        if short_side > 0 and float(long_side) / float(short_side) > 50.0:
            raise ErrorBase(
                400,
                'aspect ration is too large, long_size:short_side should not larger than 50.0'
            )

        batch = generate_batch(img)
        msg = pb.ForwardMsg()
        msg.network_input_buf = cPickle.dumps(
            batch, protocol=cPickle.HIGHEST_PROTOCOL)

        msg_out = self.inference_req.inference_msg(msg)
        scores = []
        boxes = []

        r = cPickle.loads(msg_out.network_output_buf)
        scores.append(r['scores'])
        boxes.append(r['boxes'])

        det_ret = []
        for cls_index in sorted(classes_dict.keys()):
            cls_ind = cls_index
            cls_name = classes_dict.get(cls_ind)
            cls_boxes = boxes[0][:, 4:8] if config.CLASS_AGNOSTIC else boxes[
                0][:, 4 * cls_ind:4 * 4 * (cls_ind + 1)]
            cls_scores = scores[0][:, cls_ind, np.newaxis]
            threshold = float(threshold_dict[cls_ind])
            keep = np.where(cls_scores > threshold)[0]
            dets = np.hstack(
                (cls_boxes, cls_scores)).astype(np.float32)[keep, :]
            keep = nms(dets)
            det_ret.extend(
                _build_result(det, cls_name, cls_ind, self.labels)
                for det in dets[keep, :])
        return pb.InferenceResponse(code=200,
                                    result=json.dumps({'detections': det_ret}))