if foldno: mdir += '_' + foldno #setting the stats folder statsdir = outdir + os.path.sep + au.stats_str() if expname: statsdir += '_' + expname if foldno: statsdir += '_' + foldno #setting a string with step parameters step_params = ' ' + measure_fname + ' ' + mdir absolute_str = '' if absval: absolute_str = ' ' + au.abs_str() step_params += absolute_str leave_str = '' if leave > -1: leave_str = ' excluding subject ' + str(leave) step_params += leave_str #checking if this measure has already been done endstep = au.measure_str() + step_params stepdone = au.is_done(chkf, endstep) #add pluses to output dir if it already exists if stepdone: while os.path.exists(mdir): mdir += '+'
def save_data (outdir, prefix, dataname, otype, excluding, leave, feats, labels, exclfeats, exclulabels, dmin, dmax, scale, scale_min, scale_max, lthr, uthr, thrp, absolute): #setting output file name ofname = au.feats_str() if leave > -1: ofname += '.' + au.excluded_str() + str(leave) if absolute: ofname += '.' + au.abs_str() if lthr: ofname += '.lthr_' + str(lthr) if uthr: ofname += '.uthr_' + str(uthr) if thrp: ofname += '.thrP_' + str(thrp) if scale: ofname += '.' + au.scaled_str() if excluding: excl_ofname = au.excluded_str() + '_' + ofname exclfilename = get_filepath (outdir, excl_ofname , otype) if prefix: ofname = prefix + '_' + ofname excl_ofname = prefix + '_' + excl_ofname filename = get_filepath (outdir, ofname, otype) #writing in a text file the scaling values of this training set if scale: write_scalingrange_file (outdir + os.path.sep + ofname + '.scaling_range', dmin, dmax, scale_min, scale_max) #saving binary file depending on output type if otype == 'numpybin': np.save (filename, feats) if excluding: np.save (exclfilename, exclfeats) elif otype == 'octave': sio.savemat (filename, {au.feats_str(): feats, au.labels_str(): labels}) if excluding: exclulabels[exclulabels == 0] = -1 sio.savemat (exclfilename, {au.feats_str(): exclfeats, au.labels_str(): exclulabels}) elif otype == 'svmperf': labels[labels == 0] = -1 ae.write_svmperf_dat(filename, dataname, feats, labels) if excluding: exclulabels[exclulabels == 0] = -1 ae.write_svmperf_dat(exclfilename, dataname, exclfeats, exclulabels) elif otype == 'arff': featnames = np.arange(nfeats) + 1 ae.write_arff (filename, dataname, featnames, feats, labels) if excluding: ae.write_arff (exclfilename, dataname, featnames, exclfeats, exclulabels) else: err = 'Output method not recognised!' au.log.error(err) sys.exit(-1) return [filename, exclfilename]
mdir += '_' + foldno #setting the stats folder statsdir = outdir + os.path.sep + au.stats_str() if expname: statsdir += '_' + expname if foldno: statsdir += '_' + foldno #setting a string with step parameters step_params = ' ' + measure_fname + ' ' + mdir absolute_str = '' if absval: absolute_str = ' ' + au.abs_str() step_params += absolute_str leave_str = '' if leave > -1: leave_str = ' excluding subject ' + str(leave) step_params += leave_str #checking if this measure has already been done endstep = au.measure_str() + step_params stepdone = au.is_done(chkf, endstep) #add pluses to output dir if it already exists if stepdone: while os.path.exists (mdir): mdir += '+'