def xdivy_grad_compute(placeholders, shape_max, dtype, rx, ry): """ Do element-wise xdivy_grad compute. Args: placeholders (Union[list, typle]): the placeholder of data input shape_max (Union[list, typle]): the shape of broadcast dtype (string): the type of data input rx (list): the reduction indices of data input with broadcast ry (list): the reduction indices for data input with broadcast Returns: output_y1 (tvm.tensor.Tensor): result of xdivy_grad output_y2 (tvm.tensor.Tensor): result of xdivy_grad """ x1_ori = placeholders[0] x2_ori = placeholders[1] grad_ori = placeholders[2] if dtype == "float16": x1 = akg.lang.ascend.cast_to(x1_ori, "float32") x2 = akg.lang.ascend.cast_to(x2_ori, "float32") grad = akg.lang.ascend.cast_to(grad_ori, "float32") x1 = akg.lang.ascend.broadcast(x1, shape_max) x2 = akg.lang.ascend.broadcast(x2, shape_max) grad = akg.lang.ascend.broadcast(grad, shape_max) else: x1 = akg.lang.ascend.broadcast(x1_ori, shape_max) x2 = akg.lang.ascend.broadcast(x2_ori, shape_max) grad = akg.lang.ascend.broadcast(grad_ori, shape_max) esp_min = tvm.const(1.18e-38, dtype="float32") x1_addepsmin = akg.lang.ascend.vadds(x1, esp_min) if product_is_mini(): x1_addepsmin_rec = reciprocal(x1_addepsmin) not_zero_x1 = akg.lang.ascend.vmul(x1, x1_addepsmin_rec) x2_rec = reciprocal(x2) partial_x1 = akg.lang.ascend.vmul(not_zero_x1, x2_rec) else: not_zero_x1 = Divide(x1, x1_addepsmin, target="cce") partial_x1 = Divide(not_zero_x1, x2, target="cce") partial_x1g = akg.lang.ascend.vmul(partial_x1, grad) neg_one = tvm.const(-1, dtype="float32") neg_x1 = akg.lang.ascend.vmuls(x1, neg_one) partial_x1pow = akg.lang.ascend.vmul(partial_x1, partial_x1) partial_x2 = akg.lang.ascend.vmul(neg_x1, partial_x1pow) partial_x2g = akg.lang.ascend.vmul(partial_x2, grad) output_y1 = akg.lang.ascend.sum(partial_x1g, rx, keepdims=True) output_y2 = akg.lang.ascend.sum(partial_x2g, ry, keepdims=True) if dtype == "float16": output_y1 = akg.lang.ascend.cast_to(output_y1, "float16") output_y2 = akg.lang.ascend.cast_to(output_y2, "float16") return output_y1, output_y2
def xlogy_grad_compute(placeholders, shape_max, dtype, rx, ry): """ do element-wise xlogy_grad compute Args: placeholders (Union[list, typle]): the placeholder of data input shape_max (Union[list, typle]): the shape of broadcast dtype (string): the type of data input rx (list): the reduction indices of data input with broadcast ry (list): the reduction indices for data input with broadcast Returns output_y1 (tvm.tensor.Tensor): result of xlogy_grad output_y2 (tvm.tensor.Tensor): result of xlogy_grad """ x1_ori = placeholders[0] x2_ori = placeholders[1] grad_ori = placeholders[2] if dtype == "float16": x1 = akg.lang.ascend.cast_to(x1_ori, "float32") x2 = akg.lang.ascend.cast_to(x2_ori, "float32") grad = akg.lang.ascend.cast_to(grad_ori, "float32") x1 = akg.lang.ascend.broadcast(x1, shape_max) x2 = akg.lang.ascend.broadcast(x2, shape_max) grad = akg.lang.ascend.broadcast(grad, shape_max) else: x1 = akg.lang.ascend.broadcast(x1_ori, shape_max) x2 = akg.lang.ascend.broadcast(x2_ori, shape_max) grad = akg.lang.ascend.broadcast(grad_ori, shape_max) esp_min = tvm.const(1.18e-38, dtype="float32") x1_addespmin = akg.lang.ascend.vadds(x1, esp_min) if product_is_mini(): not_zero_x1 = akg.lang.ascend.vmul(x1, reciprocal(x1_addespmin)) log_x2 = tvm.compute( x2.shape, lambda *i: (tvm.log(x2(*i).astype("float16"))).astype("float32"), name="log_x2") else: not_zero_x1 = Divide(x1, x1_addespmin, target="cce") log_x2 = akg.lang.ascend.vlog(x2) partial_x1 = akg.lang.ascend.vmul(not_zero_x1, log_x2) partial_x1g = akg.lang.ascend.vmul(partial_x1, grad) partial_x2 = Divide(x1, x2, target="cce") if not product_is_mini() else \ akg.lang.ascend.vmul(x1, reciprocal(x2)) partial_x2g = akg.lang.ascend.vmul(partial_x2, grad) output_y1 = akg.lang.ascend.sum(partial_x1g, rx, keepdims=True) output_y2 = akg.lang.ascend.sum(partial_x2g, ry, keepdims=True) if dtype == "float16": output_y1 = akg.lang.ascend.cast_to(output_y1, "float16") output_y2 = akg.lang.ascend.cast_to(output_y2, "float16") return output_y1, output_y2
def _apply_ada_max_compute(var, m, v, grad, lr, beta1, beta1_power, beta2, epsilon): """Compute ada_max.""" # cast to float32 for improved accuracy inp_dtype = var.dtype if inp_dtype == 'float16': var = topi.cast(var, 'float32') m = topi.cast(m, 'float32') v = topi.cast(v, 'float32') lr = topi.cast(lr, 'float32') beta1_power = topi.cast(beta1_power, 'float32') beta1 = topi.cast(beta1, 'float32') beta2 = topi.cast(beta2, 'float32') grad = topi.cast(grad, 'float32') epsilon = tvm.const(epsilon, 'float32') # m += (grad - m) * (1 - beta1) rhs = tvm.compute(beta1.shape, lambda *i: beta1(*i) * neg_one_const("float32")) rhs = tvm.compute(rhs.shape, lambda *i: rhs(*i) + one_const("float32")) lhs = topi.subtract(grad, m) rhs = tvm.compute(lhs.shape, lambda *i: lhs(*i) * rhs[0]) m = topi.add(m, rhs) # v = max(beta2*v, abs(grad)) lhs = tvm.compute(v.shape, lambda *i: v(*i) * beta2[0]) rhs = topi.abs(grad) v = topi.maximum(lhs, rhs) # var -= lr / (1 - beta1_power) * (m / (v + epsilon)) # lr * m / (1 - beta1_power) * (v + epsilon) # v + epsilon rhs = tvm.compute(v.shape, lambda *i: v(*i) + epsilon) # 1 - beta1_power lhs = tvm.compute(beta1_power.shape, lambda *i: beta1_power(*i) * neg_one_const("float32")) lhs = tvm.compute(lhs.shape, lambda *i: lhs(*i) + one_const("float32")) # (1 - beta1_power) * (v + epsilon) rhs = tvm.compute(rhs.shape, lambda *i: rhs(*i) * lhs[0]) # lr * m lhs = tvm.compute(m.shape, lambda *i: m(*i) * lr[0]) # lr * m / (1 - beta1_power) * (v + epsilon) rhs = reciprocal(rhs) rhs = topi.multiply(lhs, rhs) var = topi.subtract(var, rhs) if inp_dtype == 'float16': var = topi.cast(var, inp_dtype) m = topi.cast(m, inp_dtype) v = topi.cast(v, inp_dtype) return var, m, v
def softsign_compute(input_features): """ompute for softsign""" dtype = input_features.dtype if dtype == "float16": input_features = akg.lang.ascend.cast_to(input_features, "float32") data_abs = akg.lang.ascend.vabs(input_features) data_add = akg.lang.ascend.vadds(data_abs, SCALAR_ONE) data_rec = reciprocal(data_add) res = akg.lang.ascend.vmul(input_features, data_rec) if dtype == "float16": res = akg.lang.ascend.cast_to(res, "float16") return res
def fake_quant_with_min_max_vars_per_channel_compute(input_data, input_min, input_max, num_bits=8, narrow_range=False): """fake_quant_with_min_max_vars_per_channel compute implemention""" shape = get_shape(input_data.shape) dtype = input_data.dtype min_broadcast = akg.lang.ascend.broadcast(input_min, shape, dtype) max_broadcast = akg.lang.ascend.broadcast(input_max, shape, dtype) # get nudged_min and nudged_max by nudged_min_max_compute function nudged_min_nudged_max = nudged_min_max_compute(min_broadcast, max_broadcast, num_bits, narrow_range) # transform the input between nudged_max and nudged_min clamped_tmp = topi.minimum(input_data, nudged_min_nudged_max[1]) clamped = topi.maximum(clamped_tmp, nudged_min_nudged_max[0]) # calculate the quantized and dequantized results clamped_shifted = topi.subtract(clamped, nudged_min_nudged_max[0]) if product_is_mini(): clamped_shifted_div_scale = mul(clamped_shifted, reciprocal(nudged_min_nudged_max[2]), target=utils.CCE) else: clamped_shifted_div_scale = Divide(clamped_shifted, nudged_min_nudged_max[2], target=utils.CCE) result_tmp = topi.add(clamped_shifted_div_scale, dc.half_const(dtype)) floor_result_tmp = akg.lang.ascend.floor(result_tmp) if product_is_mini(): floor_result_tmp = topi.cast(floor_result_tmp, "float16") floor_result_tmp = topi.cast(floor_result_tmp, "float32") scale_product = topi.multiply(floor_result_tmp, nudged_min_nudged_max[2]) tmp_res = topi.add(scale_product, nudged_min_nudged_max[0]) # get bool_both_zero_value by bool_both_zero_compute function bool_both_zero_value = bool_both_zero_compute(min_broadcast, max_broadcast) res = topi.multiply(tmp_res, bool_both_zero_value) return res
def nudged_min_max_compute(min_broadcast, max_broadcast, num_bits, narrow_range): """ Calculate the maximum and minimum values of the quantization. Notes: Each channel scale[i] euqal to (max_broadcast[i] - min_broadcast[i]) / (quant_max - quant_min). Then compute nudged_zero_point: nudged_zero_point = floor(between_min_max_float + 0.5) + less_quant_min_float + more_quant_max_float, between_min_max_float is first calculated by: zero_point_from_min = (quant_min_float - min_broadcast) / scale, then between_min_max_float = zero_point_from_min, which min_broadcast <= zero_point_from_min <= max_broadcast. Besides, the value of less_quant_min_float is equal to quant_min or zero, zero_point_from_min < quant_min_float, the value is quant_min, else is 0. The same as more_quant_max_float. Finally according to scale and nudged_zero_point to compute nudged_min and nudged_max: nudged_min = (quant_min - nudged_zero_point) * scale nudged_max = (quant_max - nudged_zero_point) * scale Args: min_broadcast (tvm.tensor.Tensor): minimum value to be quantified for each channel. max_broadcast (tvm.tensor.Tensor): maximum value to be quantified for each channel. num_bits (int): num_bits is the bitwidth of the quantization, range [2,16]. narrow_range (bool): if True, for each channel, quantized into the quantization range [0, 2^num_bits - 1] else quantized into the quantization range [1, 2^num_bits - 1]. Returns: nudged_min (tvm.tensor.Tensor): The same type and shape as min_broadcast. nudged_max (tvm.tensor.Tensor): The same type and shape as max_broadcast. scale (tvm.tensor.Tensor): The same type and shape as max_broadcast. """ dtype = min_broadcast.dtype quant_min = 1 if narrow_range else 0 quant_max = (2**num_bits) - 1 # because of need compute each channel, so quant_min and quant_max need to broadcast. quant_min_float = topi.full(min_broadcast.shape, dtype, tvm.const(quant_min, dtype)) quant_max_float = topi.full(min_broadcast.shape, dtype, tvm.const(quant_max, dtype)) # caculate each channel max and min difference. max_sub_min = topi.subtract(max_broadcast, min_broadcast) quant_max_sub_quant_min = topi.subtract(quant_max_float, quant_min_float) # compute scale = (max_broadcast - min_broadcast) / (quant_max - quant_min) # and min_div_scale = min_broadcast / scale if product_is_mini(): scale = mul(max_sub_min, reciprocal(quant_max_sub_quant_min), target=utils.CCE) min_div_scale = Mul(min_broadcast, reciprocal(scale), target=utils.CCE) else: scale = Divide(max_sub_min, quant_max_sub_quant_min, target=utils.CCE) min_div_scale = Divide(min_broadcast, scale, target=utils.CCE) # zero_point_from_min = quant_min_float - min_broadcast / scale zero_point_from_min = topi.subtract(quant_min_float, min_div_scale) # if zero_point_from_min < quant_min_float, bool_less_quant_min_float = 1 else 0 bool_less_quant_min_float = less_compare_float32(zero_point_from_min, quant_min_float) # if quant_max_float < zero_point_from_min, bool_more_quant_max_float = 1 else 0 bool_more_quant_max_float = less_compare_float32(quant_max_float, zero_point_from_min) # according to above bool param to select effective value less_quant_min_float = topi.multiply(quant_min_float, bool_less_quant_min_float) more_quant_max_float = topi.multiply(quant_max_float, bool_more_quant_max_float) # compute which num is not less than quant_min_float and not large than quant_max_float tensor_one = topi.full(min_broadcast.shape, dtype, dc.one_const(dtype)) bool_not_less_quant_min_float = topi.subtract(tensor_one, bool_less_quant_min_float) bool_not_more_quant_max_float = topi.subtract(tensor_one, bool_more_quant_max_float) bool_between_min_max = topi.multiply(bool_not_less_quant_min_float, bool_not_more_quant_max_float) between_min_max_float = topi.multiply(zero_point_from_min, bool_between_min_max) # add 0.5 to num which min <= num <= max and then floor them. between_min_max_add_half_one = topi.add(between_min_max_float, dc.half_const(dtype)) between_min_max_round = akg.lang.ascend.floor(between_min_max_add_half_one) if product_is_mini(): between_min_max_round = topi.cast(between_min_max_round, "float16") between_min_max_round = topi.cast(between_min_max_round, "float32") # calculate the maximum and minimum values of the quantization nudged_zero_point_tmp = topi.add(less_quant_min_float, more_quant_max_float) nudged_zero_point = topi.add(nudged_zero_point_tmp, between_min_max_round) nudged_min_tmp = topi.subtract(quant_min_float, nudged_zero_point) nudged_max_tmp = topi.subtract(quant_max_float, nudged_zero_point) nudged_min = topi.multiply(nudged_min_tmp, scale) nudged_max = topi.multiply(nudged_max_tmp, scale) res = [nudged_min, nudged_max, scale] return res
def _apply_adagrad_da_compute(var, gradient_accum, gradient_squared_accum, grad, lr, l1, l2, global_step): """Compute adagrad_da.""" dtype = var.dtype # cast to float32 for higher precision if dtype == "float16": gradient_accum = topi.cast(gradient_accum, "float32") gradient_squared_accum = topi.cast(gradient_squared_accum, "float32") grad = topi.cast(grad, "float32") lr = topi.cast(lr, "float32") l1 = topi.cast(l1, "float32") l2 = topi.cast(l2, "float32") if product_is_mini(): global_step = topi.cast(global_step, "float16") global_step = topi.cast(global_step, "float32") else: global_step = topi.cast(global_step, "float32") # 1.grad_accum += grad gradient_accum = topi.add(gradient_accum, grad) # 2.grad_squared_accum += grad * grad gs = topi.multiply(grad, grad) gradient_squared_accum = topi.add(gradient_squared_accum, gs) # 3.if l1 > 0: tmp_val = Sign(grad_accum) * max(|grad_accum|-l1*global_step, 0) # else: tmp_val = grad_accum sign_val = Sign(gradient_accum) abs_val = topi.abs(gradient_accum) mul_val = topi.multiply(global_step, l1) sub_val = topi.subtract(abs_val, mul_val) max_val = topi.maximum(sub_val, tvm.const(0, sub_val.dtype)) tmp_val = topi.multiply(sign_val, max_val) def select(l1, tmp_val, gradient_accum): """Returns tmp_val if l1 > 0 else gradient_accum.""" if product_is_mini(): l1 = topi.cast(l1, "float16") tmp_val = topi.cast(tmp_val, "float16") gradient_accum = topi.cast(gradient_accum, "float16") tmp_val = akg.tvm.compute( tmp_val.shape, lambda *i: tvm.expr.Select(l1[0] > 0, tmp_val(*i), gradient_accum(*i))) return topi.cast(tmp_val, "float32") if product_is_mini() else tmp_val tmp_val = select(l1, tmp_val, gradient_accum) # 4.x_value = -1 * lr * tmp_val x_value = topi.multiply(lr, tvm.const(-1, "float32")) x_value = topi.multiply(x_value, tmp_val) # 5.y_value = l2 * global_step * lr + sqrt(grad_squared_accum) pro_val = topi.multiply(l2, global_step) pro_val = topi.multiply(pro_val, lr) sqrt_val = sqrt(gradient_squared_accum, target=utils.CCE) y_value = topi.add(pro_val, sqrt_val) # 6.var = x_value / y_value if product_is_mini(): y_rec = reciprocal(y_value, target=utils.CCE) var_out = topi.multiply(x_value, y_rec) else: var_out = topi.divide(x_value, y_value) if dtype == "float16": var_out = akg.lang.ascend.cast_to(var_out, "float16") gradient_accum = akg.lang.ascend.cast_to(gradient_accum, "float16") gradient_squared_accum = akg.lang.ascend.cast_to( gradient_squared_accum, "float16") return var_out, gradient_accum, gradient_squared_accum
def reciprocal(x, target=utils.CUDA): """Reciprocal""" return math.reciprocal(x, target)