Пример #1
0
 def __init__(self, **kwargs):
     super(OneLayerBrain, self).__init__(**kwargs)
     self.attach(
         ConvolutionLayer(ksize=[5, 5],
                          strides=[1, 1],
                          padding="SAME",
                          in_channel_num=1,
                          out_channel_num=32,
                          name="conv1")
     )
     self.attach(ReLULayer(name="relu1"))
     self.attach(
         PoolingLayer(ksize=[5, 5],
                      strides=[5, 5],
                      padding="SAME",
                      name="pool1")
     )
     # self.attach(InnerProductLayer(in_channel_num=1152, out_channel_num=10))
     # Since torch returns None when differentiating constant, we disable
     # the last layer's bias to avoid creating None.
     self.attach(InnerProductLayer(in_channel_num=1152, out_channel_num=1, initial_bias_value=None))
     self.attach(ReshapeLayer(name="ip"))
     self.attach(HingeLossLayer(
         inputs=[
             {"name": "ip", "idxs": [0]},
             {"name": "system_in", "idxs": [1]}],
     ))
     self.attach(BinaryAccuracy(hinge_loss_label=True, inputs=[{"name": "ip"}, {"name": "system_in", "idxs": [1]}]))
Пример #2
0
    def __init__(self, **kwargs):
        super(LeNet, self).__init__(**kwargs)
        self.attach(ConvolutionLayer(ksize=[5, 5],
                                     strides=[1, 1],
                                     padding="SAME",
                                     in_channel_num=1,
                                     out_channel_num=32,
                                     name="conv1"))
        self.attach(ReLULayer(name="relu1"))
        self.attach(PoolingLayer(ksize=[2, 2],
                                 strides=[2, 2],
                                 padding="SAME",
                                 name="pool1"))

        self.attach(ConvolutionLayer(ksize=[5, 5],
                                     strides=[1, 1],
                                     padding="SAME",
                                     in_channel_num=32,
                                     out_channel_num=64,
                                     name="conv2"))
        self.attach(ReLULayer(name="relu2"))
        self.attach(PoolingLayer(ksize=[5, 5],
                                 strides=[2, 2],
                                 padding="SAME",
                                 name="pool2"))

        self.attach(InnerProductLayer(
            in_channel_num=2304,
            out_channel_num=512,
            name="ip1"))
        self.attach(ReLULayer(name="relu3"))

        self.attach(InnerProductLayer(
            in_channel_num=512,
            out_channel_num=1,
            initial_bias_value=None,
            name="ip2"))
        self.attach(ReshapeLayer(name="ip"))
        self.attach(HingeLossLayer(
            inputs=[
                {"name": "ip", "idxs": [0]},
                {"name": "system_in", "idxs": [1]}],
        ))
        self.attach(BinaryAccuracy(hinge_loss_label=True, inputs=[{"name": "ip"}, {"name": "system_in", "idxs": [1]}]))
Пример #3
0
    def __init__(self, *args, **kwargs):
        super(VGG11, self).__init__(*args, **kwargs)
        channel_num = [32, 32, 64, 64, 128, 128, 256, 256, 512, 512]
        for i in range(10):
            self.attach(ConvolutionLayer(3, 1, "SAME",
                                         in_channel_num=1 if i == 0 else channel_num[i-1],
                                         initial_bias_value=None,
                                         out_channel_num=channel_num[i]))
            # Uncomment to add BN.
            # self.attach(BN(channel_num[i])),
            self.attach(ReLULayer())
            if i != 0 and i % 2 == 0:
                self.attach(MaxPoolingLayer(ksize=2, strides=2, padding="VALID"))

        self.attach(ReshapeLayer())
        self.attach(InnerProductLayer(in_channel_num=512, out_channel_num=1, initial_bias_value=None))
        self.attach(ReshapeLayer(name="ip"))
        self.attach(HingeLossLayer(inputs=[{"name": "ip"}, {"name": "system_in", "idxs": [1]}]))
        self.attach(BinaryAccuracy(hinge_loss_label=True, inputs=[{"name": "ip"}, {"name": "system_in", "idxs": [1]}]))
def setup():
    # Set up brain
    # #########################################################################
    brain = Brain(name='maxout-zca-cifar10')

    brain.attach(DropoutLayer(keep_prob=0.8, name='dropout1'))

    brain.attach(
        ConvolutionLayer([8, 8], [1, 1, 1, 1],
                         'SAME',
                         init_para={
                             "name": "uniform",
                             "range": 0.005
                         },
                         max_norm=0.9,
                         out_channel_num=192,
                         name='conv1'))
    brain.attach(PoolingLayer([1, 4, 4, 1], [1, 2, 2, 1], 'SAME',
                              name='pool1'))
    brain.attach(ReLULayer(name='maxout1'))
    brain.attach(DropoutLayer(keep_prob=0.5, name='dropout2'))

    brain.attach(
        ConvolutionLayer([8, 8], [1, 1, 1, 1],
                         'SAME',
                         init_para={
                             "name": "uniform",
                             "range": 0.005
                         },
                         max_norm=1.9365,
                         out_channel_num=384,
                         name='conv2'))
    brain.attach(PoolingLayer([1, 4, 4, 1], [1, 2, 2, 1], 'SAME',
                              name='pool2'))
    brain.attach(ReLULayer(name='maxout2'))
    brain.attach(DropoutLayer(keep_prob=0.5, name='dropout3'))

    brain.attach(
        ConvolutionLayer([5, 5], [1, 1, 1, 1],
                         'SAME',
                         init_para={
                             "name": "uniform",
                             "range": 0.005
                         },
                         max_norm=1.9365,
                         out_channel_num=384,
                         name='conv3'))
    brain.attach(PoolingLayer([1, 2, 2, 1], [1, 2, 2, 1], 'SAME',
                              name='pool3'))
    brain.attach(ReLULayer(name='maxout3'))
    brain.attach(DropoutLayer(keep_prob=0.5, name='dropout3'))

    brain.attach(
        InnerProductLayer(init_para={
            "name": "uniform",
            "range": 0.005
        },
                          max_norm=1.9,
                          out_channel_num=2500,
                          name='ip1'))
    brain.attach(ReLULayer(name='maxout4'))
    brain.attach(DropoutLayer(keep_prob=0.3, name='dropout3'))

    brain.attach(
        InnerProductLayer(init_para={
            "name": "uniform",
            "range": 0.005
        },
                          max_norm=1.9365,
                          out_channel_num=10,
                          name='softmax_linear'))

    brain.attach(SoftmaxWithLossLayer(class_num=10, name='loss'))

    # Set up a sensor.
    # #########################################################################
    cifar_source = Cifar10FeedSource(
        name="CIFAR10",
        url='http://www.cs.toronto.edu/~kriz/cifar-10-binary.tar.gz',
        work_dir=AKID_DATA_PATH + '/cifar10',
        use_zca=True,
        num_train=50000,
        num_val=10000)

    sensor = FeedSensor(source_in=cifar_source, batch_size=128, name='data')

    # Summon a survivor.
    # #########################################################################
    survivor = kids.Kid(sensor,
                        brain,
                        kongfus.MomentumKongFu(base_lr=0.025,
                                               momentum=0.5,
                                               decay_rate=0.1,
                                               decay_epoch_num=50),
                        max_steps=200000)

    survivor.setup()

    return survivor
Пример #5
0
def cnn_block(ksize=None,
              conv_padding="SAME",
              initial_bias_value=0.,
              init_para={
                  "name": "truncated_normal",
                  "stddev": 0.1
              },
              wd={
                  "type": "l2",
                  "scale": 5e-4
              },
              max_norm=None,
              in_channel_num=32,
              out_channel_num=32,
              pool_size=[2, 2],
              pool_stride=[2, 2],
              activation={"type": "relu"},
              activation_before_pooling=False,
              keep_prob=None,
              bn=None):
    global counter
    counter += 1
    block = []

    if ksize:
        block.append(
            ConvolutionLayer(ksize=ksize,
                             strides=[1, 1],
                             padding=conv_padding,
                             initial_bias_value=initial_bias_value,
                             init_para=init_para,
                             wd=wd,
                             max_norm=max_norm,
                             in_channel_num=in_channel_num,
                             out_channel_num=out_channel_num,
                             name="conv{}".format(counter)))
        if pool_size:
            block.append(
                PoolingLayer(ksize=pool_size,
                             strides=pool_stride,
                             padding="SAME",
                             name="pool{}".format(counter)))
    else:
        block.append(
            InnerProductLayer(out_channel_num=out_channel_num,
                              in_channel_num=in_channel_num,
                              initial_bias_value=initial_bias_value,
                              init_para=init_para,
                              wd=wd,
                              name="ip{}".format(counter)))
    if bn:
        bn_layer = BatchNormalizationLayer(name="bn{}".format(counter), **bn)

    if activation:
        try:
            activation_type = activation["type"]
            if activation_type == "relu":
                layer = ReLULayer(name="relu{}".format(counter))
            elif activation_type == "maxout":
                layer = CollapseOutLayer(name="maxout{}".format(counter),
                                         group_size=activation["group_size"])
            elif activation_type == "ngsmax":
                layer = SoftmaxNormalizationLayer(
                    name="ngsoftmax{}".format(counter),
                    group_size=activation["group_size"])
            elif activation_type == "gsmax":
                layer = GroupSoftmaxLayer(name="gsmax{}".format(counter),
                                          group_size=activation["group_size"])
            else:
                print(("{} activation type has not been supported"
                       " yet.".format(activation_type)))
                sys.exit(0)
        except KeyError as e:
            print(("{} not found. You perhaps have a typo or miss a"
                   " parameter.".format(e)))
            sys.exit(0)
    else:
        layer = None

    if activation_before_pooling:
        for i, b in enumerate(block):
            if type(b) is PoolingLayer:
                if layer:
                    block.insert(i, layer)
                if bn:
                    block.insert(i, bn_layer)
                break
    else:
        # Even if there is no activation layer, which happens at the last
        # readout layer, BN may still be needed.
        if bn:
            block.append(bn_layer)
        if layer:
            block.append(layer)

    if keep_prob:
        block.append(
            DropoutLayer(keep_prob=keep_prob,
                         name="dropout{}".format(counter)))

    return block
Пример #6
0
                         InnerProductLayer, SoftmaxWithLossLayer,
                         BatchNormalizationLayer, DropoutLayer)

# Set up brain
# #########################################################################
brain = Brain(moving_average_decay=0.99, name='maxout-relu-cifar10')

brain.attach(
    ConvolutionLayer([8, 8], [1, 1, 1, 1],
                     'SAME',
                     stddev=0.005,
                     weight_decay=0.0005,
                     out_channel_num=192,
                     name='conv1'))
brain.attach(PoolingLayer([1, 4, 4, 1], [1, 2, 2, 1], 'SAME', name='pool1'))
brain.attach(ReLULayer(name='relu1'))
brain.attach(DropoutLayer(keep_prob=0.8, name='dropout1'))

brain.attach(
    ConvolutionLayer([8, 8], [1, 1, 1, 1],
                     'SAME',
                     stddev=0.005,
                     weight_decay=0.0005,
                     out_channel_num=384,
                     name='conv2'))
brain.attach(PoolingLayer([1, 4, 4, 1], [1, 2, 2, 1], 'SAME', name='pool2'))
brain.attach(ReLULayer(name='relu2'))
brain.attach(DropoutLayer(keep_prob=0.5, name='dropout2'))

brain.attach(
    ConvolutionLayer([5, 5], [1, 1, 1, 1],