Пример #1
0
    def __init__(self, n, m):
        self.n = n
        self.m = m

        m_ratio = self.m / 30.0
        self.augment_list = (
            A.CLAHE(always_apply=True),
            A.Equalize(always_apply=True),
            A.InvertImg(always_apply=True),
            A.Rotate(limit=30 * m_ratio, always_apply=True),
            A.Posterize(num_bits=int(4 * m_ratio), always_apply=True),
            A.Solarize(threshold=m_ratio, always_apply=True),
            A.RGBShift(r_shift_limit=110 * m_ratio,
                       g_shift_limit=110 * m_ratio,
                       b_shift_limit=110 * m_ratio,
                       always_apply=True),
            A.HueSaturationValue(hue_shift_limit=20 * m_ratio,
                                 sat_shift_limit=30 * m_ratio,
                                 val_shift_limit=20 * m_ratio,
                                 always_apply=True),
            A.RandomContrast(limit=m_ratio, always_apply=True),
            A.RandomBrightness(limit=m_ratio, always_apply=True),
            #  A.Sharpen(always_apply=True), 0.1, 1.9),
            A.ShiftScaleRotate(shift_limit=0.3 * m_ratio,
                               shift_limit_y=0,
                               rotate_limit=0,
                               always_apply=True),
            A.ShiftScaleRotate(shift_limit=0.3 * m_ratio,
                               shift_limit_x=0,
                               rotate_limit=0,
                               always_apply=True),
            A.Cutout(num_holes=int(8 * m_ratio), always_apply=True),
            A.IAAAffine(shear=0.3 * m_ratio, always_apply=True))

        assert self.n <= len(self.augment_list)
Пример #2
0
    def __init__(self,fold_file, pkl_file_path, folds, image_height, image_width, mean, std):
        self.pkl_file_path = pkl_file_path
        self.fold_file = fold_file

        df = pd.read_csv(self.fold_file)
        df = df[['image_id','labels','kfold']]
        df = df[df['kfold'].isin(folds)].reset_index(drop= True)

        class_map = {'A':0,'B':1,'C':2}

        self.img_id = df['image_id'].apply(lambda x: x.split('.')[0]).values
        self.labels = df['labels'].apply(lambda x: x[-1]).map(class_map).values


        # training set
        self.aug = albumentations.Compose([
            albumentations.Resize(image_height, image_width, always_apply=True),
            albumentations.Cutout(num_holes=8,max_h_size=30,max_w_size=60,always_apply=False,p=0.9),
            albumentations.Equalize(always_apply=False, p=0.9),
            albumentations.RandomShadow(shadow_roi=(0, 0.85, 1, 1), p=0.9),
            albumentations.RandomBrightnessContrast(brightness_limit=0.1, contrast_limit=0.1, p=0.9),
            albumentations.ShiftScaleRotate(shift_limit=0.0625,
                                            scale_limit=0.1,
                                            rotate_limit=5,
                                            p=0.9),
            albumentations.Normalize(mean, std, always_apply=True)
        ])
Пример #3
0
def test_equalize():
    aug = A.Equalize(p=1)

    img = np.random.randint(0, 256, 256 * 256 * 3, np.uint8).reshape((256, 256, 3))
    a = aug(image=img)["image"]
    b = F.equalize(img)
    assert np.all(a == b)

    mask = np.random.randint(0, 2, 256 * 256, np.uint8).reshape((256, 256))
    aug = A.Equalize(mask=mask, p=1)
    a = aug(image=img)["image"]
    b = F.equalize(img, mask=mask)
    assert np.all(a == b)

    def mask_func(image, test):
        return mask

    aug = A.Equalize(mask=mask_func, mask_params=["test"], p=1)
    assert np.all(aug(image=img, test=mask)["image"] == F.equalize(img, mask=mask))
def augment_and_save(path_to_get_data,
                     path_to_save_data,
                     number_of_tranformation=10):
    """
    Function defined to apply an image / rounding boxes transformation pipeline
    and save the corresponding files.

    Args:
    -----
    - path_to_get_data: str, the folder path where untouched data is
    - path_to_save_data: str, the folder path where to save augmented data
    - number_of_tranformation: int, number of transformation to perform

    Returns:
    --------
    -  None
    """
    images_names, yolo_names = get_images_and_box_files_names(path_to_get_data)
    augmentation_pipeline = A.Compose([
        A.Resize(416, 416),
        A.Equalize(by_channels=True),
        A.RGBShift(r_shift_limit=(-30, 30),
                   g_shift_limit=(-30, 30),
                   b_shift_limit=(-30, 30),
                   p=0.25),
        A.HorizontalFlip(p=0.35),
        A.VerticalFlip(p=0.35),
        A.ShiftScaleRotate(border_mode=cv2.BORDER_REPLICATE, p=0.35),
        A.RandomSnow(brightness_coeff=2.0, p=0.2)
    ], A.BboxParams('yolo', ['class_labels']))
    # Iterate through each image
    for idx, name in enumerate(images_names):
        image_path = path_to_get_data + '/' + name
        image = cv2.imread(image_path)
        yolo_file_path = path_to_get_data + '/' + yolo_names[idx]
        labels, coordinates = get_labels_and_coordinates(yolo_file_path)
        # Generate x tranformation of the images
        for i in tqdm(range(number_of_tranformation)):
            new_image_name, new_yolos_name = set_new_files_names(
                name, i, "jpg", "txt")
            # Catch error due to unproper labelling
            try:
                new_image, new_coordinates, labels = get_data_from_pipeline(
                    augmentation_pipeline, image, coordinates, labels)
            except ValueError as e:
                print("**** Error Message ****\n")
                print(f"{e}\n")
                print(f"""Invalid transformation of box:
                          {str(new_coordinates)}\n""")
                print(f"Image: {new_image_name}\n")
                continue
            # Same each image to jpg with its corresponding coordinates
            save_image_bbox_data(path_to_save_data, new_image, new_image_name,
                                 new_coordinates, labels, new_yolos_name)
Пример #5
0
def get_train_augm(size=Tuple[int, int],
                   p=0.5):
    return albu.Compose([
        albu.Resize(*size),
        albu.OneOf([albu.CLAHE(6, (4, 4), always_apply=True),
                    albu.Equalize(always_apply=True)], p=0.99),
        albu.HorizontalFlip(p=p),
        albu.VerticalFlip(p=p),
        albu.ToFloat(255),
        ToTensor()  # albu.Lambda(image=to_tensor)
    ])
Пример #6
0
def get_augmentation(save_path=None, load_path=None):
        if load_path:
            return A.load(load_path)
        else:
            aug_seq1 = A.OneOf([
                A.Rotate(limit=(-90, 90), p=1.0),
                A.Flip(p=1.0),
                A.OpticalDistortion(always_apply=False, p=1.0, distort_limit=(-0.3, 0.3), 
                                    shift_limit=(-0.05, 0.05), interpolation=3, 
                                    border_mode=3, value=(0, 0, 0), mask_value=None),
            ], p=1.0)
            aug_seq2 = A.OneOf([
                # A.ChannelDropout(always_apply=False, p=1.0, channel_drop_range=(1, 1), fill_value=0),
                A.RGBShift(r_shift_limit=15, g_shift_limit=15,
                           b_shift_limit=15, p=1.0),
                A.RandomBrightnessContrast(always_apply=False, p=1.0, brightness_limit=(
                    -0.2, 0.2), contrast_limit=(-0.2, 0.2), brightness_by_max=True)
            ], p=1.0)
            aug_seq3 = A.OneOf([
                A.GaussNoise(always_apply=False, p=1.0, var_limit=(10, 50)),
                A.ISONoise(always_apply=False, p=1.0, intensity=(
                    0.1, 1.0), color_shift=(0.01, 0.3)),
                A.MultiplicativeNoise(always_apply=False, p=1.0, multiplier=(
                    0.8, 1.6), per_channel=True, elementwise=True),
            ], p=1.0)
            aug_seq4 = A.OneOf([
                A.Equalize(always_apply=False, p=1.0,
                           mode='pil', by_channels=True),
                A.InvertImg(always_apply=False, p=1.0),
                A.MotionBlur(always_apply=False, p=1.0, blur_limit=(3, 7)),
                A.RandomFog(always_apply=False, p=1.0, 
                            fog_coef_lower=0.01, fog_coef_upper=0.2, alpha_coef=0.2)
            ], p=1.0)
            aug_seq = A.Compose([
                # A.Resize(self.img_size, self.img_size),
                # aug_seq1,
                aug_seq2,
                aug_seq3,
                aug_seq4,
                # A.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
                # A.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
            ])
            # aug_path = '/home/jitesh/prj/classification/test/bolt/aug/aug_seq.json'
            if save_path:
                A.save(aug_seq, save_path)
            # loaded_transform = A.load(aug_path)
            return aug_seq
    def __getitem__(self, index):
        """Return a data point and its metadata information.

        Parameters:
            index - - a random integer for data indexing

        Returns a dictionary that contains A, B, A_paths and B_paths
            A (tensor) - - an image in the input domain
            B (tensor) - - its corresponding image in the target domain
            A_paths (str) - - image paths
            B_paths (str) - - image paths (same as A_paths)
        """
        # read a image given a random integer index
        AB_path = self.AB_paths[index]
        AB = Image.open(AB_path).convert('RGB')
        # split AB image into A and B
        w, h = AB.size
        w2 = int(w / 2)
        A = AB.crop((0, 0, w2, h))
        B = AB.crop((w2, 0, w, h))

        # apply the same transform to both A and B
        # transform_params = get_params(self.opt, A.size)
        transformOutput = Al.Compose([
            Al.Crop(x_max=256, y_max=256),
            Al.RandomRotate90(),
            Al.Flip(),
        ])
        transformInput = Al.Compose([
            Al.Blur(blur_limit=3),
            Al.Equalize(always_apply=True),
            Al.RandomBrightnessContrast(),
            transformOutput,
        ])
        random.seed(42)
        A = transformInput(image=np.array(A))['image']
        B = transformOutput(image=np.array(B))['image']

        # A_transform = get_transform(self.opt, transform_params, grayscale=(self.input_nc == 1))
        # B_transform = get_transform(self.opt, transform_params, grayscale=(self.output_nc == 1))

        # A = A_transform(A)
        # B = B_transform(B)

        return {'A': A, 'B': B, 'A_paths': AB_path, 'B_paths': AB_path}
 def __init__(self, k: int = 5, always_apply: bool = True, p: float = 1.0):
     super(RandAugmentAlb, self).__init__(always_apply, p)
     self.k = k
     self.candidates = [
         AutoContrast(p=1.0),
         A.Equalize(p=1.0),
         A.InvertImg(p=1.0),
         Rotate(30., p=1.0),
         A.Posterize([4, 8], p=1.0),
         A.Solarize([0, 256], p=1.0),
         A.RandomBrightnessContrast(brightness_limit=0.,
                                    contrast_limit=(0.05, 0.95),
                                    p=1.0),
         A.RandomBrightnessContrast(brightness_limit=(0.05, 0.95),
                                    contrast_limit=0.,
                                    p=1.0),
         ShearX(0.3),
         ShearY(0.3),
         Translate(0.45),
     ]
Пример #9
0
def albumentations_list(MAGN: int = 4):
    """
    Returns standard list of albumentations transforms, each of mangitude `MAGN`.
    
    Args:
        MAGN (int): Magnitude of each transform in the returned list.
    """
    M = MAGN
    transform_list = [
        # PIXEL-LEVEL
        A.RandomContrast(limit=M * .1, always_apply=True),
        A.RandomBrightness(limit=M * .1, always_apply=True),
        A.Equalize(always_apply=True),
        A.OpticalDistortion(distort_limit=M * .2,
                            shift_limit=M * .1,
                            always_apply=True),
        A.RGBShift(r_shift_limit=M * 10,
                   g_shift_limit=M * 10,
                   b_shift_limit=M * 10,
                   always_apply=True),
        A.ISONoise(color_shift=(M * .01, M * .1),
                   intensity=(M * .02, M * .2),
                   always_apply=True),
        A.RandomFog(fog_coef_lower=M * .01,
                    fog_coef_upper=M * .1,
                    always_apply=True),
        A.CoarseDropout(max_holes=M * 10, always_apply=True),
        A.GaussNoise(var_limit=(M, M * 50), always_apply=True),

        # SPATIAL
        A.Rotate(always_apply=True),
        A.Transpose(always_apply=True),
        A.NoOp(always_apply=True),
        A.ElasticTransform(alpha=M * .25,
                           sigma=M * 3,
                           alpha_affine=M * 3,
                           always_apply=True),
        A.GridDistortion(distort_limit=M * .075, always_apply=True)
    ]
    return transform_list
Пример #10
0
    def __init__(self, folds, img_height, img_width, mean, std):
        df = pd.read_csv('../input/train_folds.csv')
        df = df[[
            'image_id', 'grapheme_root', 'vowel_diacritic',
            'consonant_diacritic', 'kfold'
        ]]

        df = df[df.kfold.isin(folds)].reset_index(drop=True)

        self.image_ids = df.image_id.values

        self.grapheme_root = df.grapheme_root.values
        self.vowel_diacritic = df.vowel_diacritic.values
        self.consonant_diacritic = df.consonant_diacritic

        if len(folds) == 1:
            self.aug = albumentations.Compose([
                albumentations.Resize(img_height, img_width),
                albumentations.Normalize(mean, std, always_apply=True)
            ])
        else:
            self.aug = albumentations.Compose([
                albumentations.Resize(img_height, img_width),
                albumentations.ShiftScaleRotate(shift_limit=0.0625,
                                                scale_limit=0.1,
                                                rotate_limit=5,
                                                p=0.9),
                albumentations.Rotate(limit=5),
                albumentations.RandomContrast(limit=0.2),
                albumentations.GaussianBlur(blur_limit=7),
                albumentations.RandomGamma(),
                albumentations.RandomShadow(),
                albumentations.GaussNoise(),
                albumentations.ChannelShuffle(),
                #albumentations.Cutout(),
                albumentations.Equalize(),
                albumentations.MultiplicativeNoise(),
                albumentations.Normalize(mean, std, always_apply=True)
            ])
Пример #11
0
    def __init__(
        self,
        transforms=None,
        mean=(0, 0, 0),
        std=(1, 1, 1),
        width=3,
        depth=-1,
        alpha=1.,
        p=1.,
    ):
        self.transforms = transforms
        self.mean = mean
        self.std = std
        self.width = width
        self.depth = depth
        self.alpha = alpha
        self.p = p

        if self.transforms is None:
            self.transforms = [
                AutoContrast(cutoff=0, p=1),
                albu.Equalize(mode='pil', p=1),
                albu.Posterize(num_bits=(3, 4), p=1),
                albu.ShiftScaleRotate(shift_limit=0, scale_limit=0, rotate_limit=5, border_mode=cv2.BORDER_CONSTANT, value=(0, 0, 0), p=1),  # rotate
                albu.Solarize(threshold=77, p=1),
                RandomShear(shear_x=0.09, shear_y=0, border_mode=cv2.BORDER_CONSTANT, value=(0, 0, 0), p=1),
                RandomShear(shear_x=0, shear_y=0.09, border_mode=cv2.BORDER_CONSTANT, value=(0, 0, 0), p=1),
                VerticalShift(shift_limit=0.09, border_mode=cv2.BORDER_CONSTANT, value=(0, 0, 0), p=1),
                HorizontalShift(shift_limit=0.09, border_mode=cv2.BORDER_CONSTANT, value=(0, 0, 0), p=1),
                # ImageNet-C
                albu.HueSaturationValue(hue_shift_limit=0, sat_shift_limit=(-36, 0), val_shift_limit=0, p=1),  # saturation
                albu.RandomContrast(limit=(-0.36, 0), p=1),
                albu.RandomBrightness(limit=(-0.36, 0), p=1),
                albu.OneOf([  # sharpness
                    albu.IAASharpen(alpha=(0.1, 0.5), lightness=0, p=1),
                    albu.Blur(blur_limit=7, p=1),
                ], p=0.5),
            ]
import albumentations as A
from albumentations.pytorch import ToTensorV2

train_transformation = A.Compose([
    A.HorizontalFlip(p=0.5),
    A.ShiftScaleRotate(rotate_limit=(-15, -15), border_mode=1, p=0.5),
    A.OneOf([
        A.RandomBrightnessContrast(p=0.5,
                                   brightness_limit=(-0.1, 0.1),
                                   contrast_limit=(-0.1, 0.1),
                                   brightness_by_max=True),
        A.Equalize(p=0.5, mode='cv', by_channels=True),
    ],
            p=0.5),
    A.RandomCrop(224, 224, p=1.0),
    ToTensorV2(p=1.0)
])

test_transformation = A.Compose([A.Resize(224, 224, p=1.0), ToTensorV2(p=1.0)])
Пример #13
0
        alb.OneOf([
            alb.OpticalDistortion(p=0.3),
            alb.GridDistortion(p=0.1),
            alb.IAAAffine(p=0.1),
            alb.ShiftScaleRotate(rotate_limit=15, p=0.1)
        ],
                  p=0.2),
        alb.OneOf([alb.CLAHE(clip_limit=2),
                   alb.IAASharpen(),
                   alb.IAAEmboss()],
                  p=0.3),
        alb.OneOf([
            alb.HueSaturationValue(p=0.3),
            alb.RGBShift(),
            alb.RandomBrightnessContrast(),
            alb.Equalize(mode='cv', p=1)
        ],
                  p=0.3),
        alb.HorizontalFlip(),
        alb.RandomGamma(p=0.2),
        alb.OneOf([
            alb.CoarseDropout(2, 10, 10, p=0.5),
            alb.RandomRain(blur_value=3, p=1)
        ],
                  p=0.5)
    ]))


class MyDataset(Dataset):
    def __init__(self,
                 data_dir,
Пример #14
0
    def augment_and_save_images(self):
        _, _, files = next(os.walk(self.img_dir_path))
        counter = 1
        rotate_and_flip = A.Compose(
            [A.VerticalFlip(p=1), A.RandomRotate90(p=1)])
        elastic_aug = A.ElasticTransform(p=1,
                                         alpha=400,
                                         sigma=20,
                                         alpha_affine=0.5,
                                         border_mode=cv2.BORDER_REPLICATE,
                                         interpolation=cv2.INTER_LINEAR)
        clahe_aug = A.CLAHE(clip_limit=(4.0, 16.0),
                            tile_grid_size=(4, 4),
                            always_apply=False,
                            p=1)
        blur_aug = A.Blur(blur_limit=(5, 8), always_apply=False, p=1)
        downscale_aug = A.Downscale(scale_min=0.25,
                                    scale_max=0.4,
                                    interpolation=0,
                                    always_apply=False,
                                    p=1)
        equalize_aug = A.Equalize(mode='cv',
                                  by_channels=True,
                                  mask=None,
                                  always_apply=False,
                                  p=1)
        gaussnoise_aug = A.GaussNoise(var_limit=(50, 100),
                                      mean=0,
                                      always_apply=False,
                                      p=1)
        saturate_aug = A.HueSaturationValue(hue_shift_limit=30,
                                            sat_shift_limit=30,
                                            val_shift_limit=30,
                                            p=1)
        embos_aug = A.IAAEmboss(alpha=(0.5, 0.8),
                                strength=(0.5, 0.8),
                                always_apply=False,
                                p=1)
        sharpen_aug = A.IAASharpen(alpha=(0.5, 0.8),
                                   lightness=(0.8, 1),
                                   always_apply=False,
                                   p=1)
        solarize_aug = A.Solarize(threshold=(100, 200),
                                  always_apply=False,
                                  p=1)
        aug_dict = {
            'rotate': rotate_and_flip,
            'elastic': elastic_aug,
            'clahe': clahe_aug,
            'blur': blur_aug,
            'downscale': downscale_aug,
            'equalize': equalize_aug,
            'noise': gaussnoise_aug,
            'saturate': saturate_aug,
            'embos': embos_aug,
            'sharpen': sharpen_aug,
            'solarize': solarize_aug
        }
        required_aug_list = [
            'rotate', 'elastic', 'noise', 'saturate', 'solarize'
        ]

        for filename in files:
            image_path = self.img_dir_path + '/' + filename
            image = imageio.imread(image_path)
            label_path = self.label_dir_path + '/' + filename
            label = np.asarray(Image.open(label_path))
            for aug_type in required_aug_list:
                self.save_augmented_images(aug_name=aug_type,
                                           augmented_items=aug_dict[aug_type](
                                               image=image, mask=label),
                                           image_name=counter)
            #Following 3 if loops are separated to get extra randomness
            if bool(random.getrandbits(1)):
                self.save_augmented_images(aug_name='clahe',
                                           augmented_items=aug_dict['clahe'](
                                               image=image, mask=label),
                                           image_name=counter)
            else:
                self.save_augmented_images(
                    aug_name='equalize',
                    augmented_items=aug_dict['equalize'](image=image,
                                                         mask=label),
                    image_name=counter)
            if bool(random.getrandbits(1)):
                self.save_augmented_images(aug_name='blur',
                                           augmented_items=aug_dict['blur'](
                                               image=image, mask=label),
                                           image_name=counter)
            else:
                self.save_augmented_images(
                    aug_name='downscale',
                    augmented_items=aug_dict['downscale'](image=image,
                                                          mask=label),
                    image_name=counter)
            if bool(random.getrandbits(1)):
                self.save_augmented_images(aug_name='embos',
                                           augmented_items=aug_dict['embos'](
                                               image=image, mask=label),
                                           image_name=counter)
            else:
                self.save_augmented_images(aug_name='sharpen',
                                           augmented_items=aug_dict['sharpen'](
                                               image=image, mask=label),
                                           image_name=counter)
            counter += 1
Пример #15
0
def get_transform_imagenet(use_albu_aug):
    if use_albu_aug:
        train_transform = al.Compose([
            # al.Flip(p=0.5),
            al.Resize(256, 256, interpolation=2),
            al.RandomResizedCrop(224,
                                 224,
                                 scale=(0.08, 1.0),
                                 ratio=(3. / 4., 4. / 3.),
                                 interpolation=2),
            al.HorizontalFlip(),
            al.OneOf(
                [
                    al.OneOf(
                        [
                            al.ShiftScaleRotate(
                                border_mode=cv2.BORDER_CONSTANT,
                                rotate_limit=30),  # , p=0.05),
                            al.OpticalDistortion(
                                border_mode=cv2.BORDER_CONSTANT,
                                distort_limit=5.0,
                                shift_limit=0.1),
                            # , p=0.05),
                            al.GridDistortion(border_mode=cv2.BORDER_CONSTANT
                                              ),  # , p=0.05),
                            al.ElasticTransform(
                                border_mode=cv2.BORDER_CONSTANT,
                                alpha_affine=15),  # , p=0.05),
                        ],
                        p=0.1),
                    al.OneOf(
                        [
                            al.RandomGamma(),  # p=0.05),
                            al.HueSaturationValue(),  # p=0.05),
                            al.RGBShift(),  # p=0.05),
                            al.CLAHE(),  # p=0.05),
                            al.ChannelShuffle(),  # p=0.05),
                            al.InvertImg(),  # p=0.05),
                        ],
                        p=0.1),
                    al.OneOf(
                        [
                            al.RandomSnow(),  # p=0.05),
                            al.RandomRain(),  # p=0.05),
                            al.RandomFog(),  # p=0.05),
                            al.RandomSunFlare(num_flare_circles_lower=1,
                                              num_flare_circles_upper=2,
                                              src_radius=110),
                            # p=0.05, ),
                            al.RandomShadow(),  # p=0.05),
                        ],
                        p=0.1),
                    al.RandomBrightnessContrast(p=0.1),
                    al.OneOf(
                        [
                            al.GaussNoise(),  # p=0.05),
                            al.ISONoise(),  # p=0.05),
                            al.MultiplicativeNoise(),  # p=0.05),
                        ],
                        p=0.1),
                    al.OneOf(
                        [
                            al.ToGray(),  # p=0.05),
                            al.ToSepia(),  # p=0.05),
                            al.Solarize(),  # p=0.05),
                            al.Equalize(),  # p=0.05),
                            al.Posterize(),  # p=0.05),
                            al.FancyPCA(),  # p=0.05),
                        ],
                        p=0.1),
                    al.OneOf(
                        [
                            # al.MotionBlur(blur_limit=1),
                            al.Blur(blur_limit=[3, 5]),
                            al.MedianBlur(blur_limit=[3, 5]),
                            al.GaussianBlur(blur_limit=[3, 5]),
                        ],
                        p=0.1),
                    al.OneOf(
                        [
                            al.CoarseDropout(),  # p=0.05),
                            al.Cutout(),  # p=0.05),
                            al.GridDropout(),  # p=0.05),
                            al.ChannelDropout(),  # p=0.05),
                            al.RandomGridShuffle(),  # p=0.05),
                        ],
                        p=0.1),
                    al.OneOf(
                        [
                            al.Downscale(),  # p=0.1),
                            al.ImageCompression(quality_lower=60),  # , p=0.1),
                        ],
                        p=0.1),
                ],
                p=0.5),
            al.Normalize(),
            ToTensorV2()
        ])
    else:
        train_transform = transforms.Compose([
            transforms.Resize(256),
            transforms.RandomResizedCrop(224),
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),
        ])
    test_transform = transforms.Compose([
        transforms.Resize(256),
        transforms.CenterCrop(224),
        transforms.ToTensor(),
    ])

    if use_albu_aug:
        train_transform = MultiDataTransformAlbu(train_transform)
    else:
        train_transform = MultiDataTransform(train_transform)

    return train_transform, test_transform
Пример #16
0
aug_seq1 = A.OneOf([
    A.Rotate(limit=(-90, 90), p=1.0),
    A.Flip(p=1.0),
    ], p=1.0)
aug_seq2 = A.OneOf([
    # A.ChannelDropout(always_apply=False, p=1.0, channel_drop_range=(1, 1), fill_value=0),
    A.RGBShift(r_shift_limit=15, g_shift_limit=15, b_shift_limit=15, p=1.0),
    A.RandomBrightnessContrast(always_apply=False, p=1.0, brightness_limit=(-0.2, 0.2), contrast_limit=(-0.2, 0.2), brightness_by_max=True)
    ], p=1.0)
aug_seq3 = A.OneOf([
    A.GaussNoise(always_apply=False, p=1.0, var_limit=(10, 100)),
    A.ISONoise(always_apply=False, p=1.0, intensity=(0.1, 1.0), color_shift=(0.01, 0.3)),
    A.MultiplicativeNoise(always_apply=False, p=1.0, multiplier=(0.8, 1.6), per_channel=True, elementwise=True),
    ], p=1.0)
aug_seq4 = A.OneOf([
    A.Equalize(always_apply=False, p=1.0, mode='pil', by_channels=True),
    A.InvertImg(always_apply=False, p=1.0),
    A.MotionBlur(always_apply=False, p=1.0, blur_limit=(3, 7)),
    A.OpticalDistortion(always_apply=False, p=1.0, distort_limit=(-0.3, 0.3), shift_limit=(-0.05, 0.05), interpolation=0, border_mode=0, value=(0, 0, 0), mask_value=None),
    A.RandomFog(always_apply=False, p=1.0, fog_coef_lower=0.1, fog_coef_upper=0.45, alpha_coef=0.5)
    ], p=1.0)
aug_seq = A.Compose([
    A.Resize(IMG_SIZE, IMG_SIZE),
    aug_seq1,
    aug_seq2,
    aug_seq3,
    aug_seq4,
    A.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])
aug_path = '/home/jitesh/prj/classification/test/bolt/aug/aug_seq.json'
A.save(aug_seq, aug_path)
Пример #17
0
def get_train_aug(RESOLUTION=300): 
    return A.Compose([
        A.LongestMaxSize(max_size=RESOLUTION*2, interpolation=cv2.INTER_CUBIC, \
                         always_apply=True),
        A.PadIfNeeded(min_height=RESOLUTION*2, min_width=RESOLUTION*2, always_apply=True, border_mode=cv2.BORDER_CONSTANT),
        A.RandomResizedCrop(RESOLUTION,RESOLUTION, scale=(0.7, 1), \
                            interpolation=cv2.INTER_CUBIC),
        A.Resize(RESOLUTION, RESOLUTION, p=1.0, interpolation=cv2.INTER_CUBIC),
        A.FancyPCA(p=0.8, alpha=0.5),
#         A.Transpose(p=0.7),
        A.HorizontalFlip(p=0.5),
        A.VerticalFlip(p=0.1),
        A.ShiftScaleRotate(p=0.4, rotate_limit=12),
        A.HueSaturationValue(
            always_apply=False, p=0.3, 
            hue_shift_limit=(-20, 20), 
            sat_shift_limit=(-30, 30), 
            val_shift_limit=(-20, 20)),

#         A.HueSaturationValue(
#             hue_shift_limit=0.4, #.3
#             sat_shift_limit=0.4, #.3
#             val_shift_limit=0.4, #.3
#             p=0.7
#         ),
        A.RandomBrightnessContrast(
            brightness_limit=(-0.5,0.5), #-.2,.2
            contrast_limit=(-0.4, 0.4),  #-.2,.2
            #p=0.6
        ),
        A.CoarseDropout(p=0.8, max_holes=30),
#         A.Cutout(p=0.8, max_h_size=40, max_w_size=40),
        A.Cutout(p=1, max_h_size=60, max_w_size=30, num_holes=6, fill_value=[106,87,55]),
        A.Cutout(p=1, max_h_size=30, max_w_size=60, num_holes=6, fill_value=[106,87,55]),
        A.OneOf([
                A.OpticalDistortion(always_apply=False, p=1.0, distort_limit=(-0.6599999666213989, 0.6800000071525574), 
                                    shift_limit=(-0.6699999570846558, 0.4599999785423279), interpolation=0, 
                                    border_mode=0, value=(0, 0, 0), mask_value=None),
#                 A.OpticalDistortion(p=0.5, distort_limit=0.15, shift_limit=0.15),
#                 A.GridDistortion(p=0.5, distort_limit=0.5),
                A.GridDistortion(always_apply=False, p=1.0, 
                                 num_steps=6, distort_limit=(-0.4599999785423279, 0.5), 
                                 interpolation=0, border_mode=0, 
                                 value=(0, 0, 0), mask_value=None),

#                 A.IAAPiecewiseAffine(p=0.5, scale=(0.1, 0.14)),
                ], p=0.6),
        A.Sharpen(p=1.0, alpha=(0.1,0.3), lightness=(0.3, 0.9)),
        A.GaussNoise(var_limit=(300.0, 500.0), p=0.4),
        A.ISONoise(always_apply=False, p=0.4, 
                   intensity=(0.10000000149011612, 1.399999976158142), 
                   color_shift=(0.009999999776482582, 0.4000000059604645)),

        A.OneOf([
            A.Equalize(always_apply=False, p=1.0, mode='cv', by_channels=True),
            A.Solarize(always_apply=False, p=1.0, threshold=(67, 120)),
#             A.IAAAdditiveGaussianNoise(p=1.0),
            A.GaussNoise(p=1.0),
            A.MotionBlur(always_apply=False, p=1.0, blur_limit=(5, 20))
            ], p=0.5),
        ], p=1.0)
                rotate_limit=18, p=1, border_mode=cv.BORDER_CONSTANT),
            A.IAAAffine(shear=10, p=1, mode="constant"),
            #A.Perspective(scale=(0.05, 0.15), keep_size=True, pad_mode=0, pad_val=0,
            #             mask_pad_val=0, fit_output=False, interpolation=1, always_apply=False, p=1),
        ],
        p=1.0,
    ),
    A.OneOf(
        [
            A.FancyPCA(alpha=0.1, always_apply=False, p=1),
            A.Blur(p=1),
            A.ToGray(p=0.8),
            A.ColorJitter(
                brightness=0.1, contrast=0.1, saturation=0.1, hue=0.1, p=1),
            A.ChannelDropout((1, 1), fill_value=0, always_apply=False, p=1),
        ],
        p=0.3,
    ),
    A.OneOf(
        [  #A.GaussNoise (var_limit=(10.0, 50.0), mean=0, per_channel=True, always_apply=False, p=0.5),
            A.Equalize(mode='cv',
                       by_channels=True,
                       mask=None,
                       mask_params=(),
                       always_apply=False,
                       p=0.8),
            A.MotionBlur(blur_limit=4, p=1),
        ],
        p=0.1,
    )
])
 def __call__(self, image, boxes=None, labels=None):
     #initialize the format for lib albumentations
     if boxes.shape[0] == 0:
         return image, boxes, labels
     bbox = []
     for i in boxes:
         bbox.append(list(i))
     #create annotations
     annotations = {
         'image': image,
         'bboxes': boxes,
         'category_id': list(labels)
     }
     #create translation
     #Color_Level Change
     if self.cfg.DATA_LOADER.AUGMENTATION_WEATHER:
         trans_color_level = A.Compose([
             A.Cutout(num_holes=20,
                      max_h_size=64,
                      max_w_size=64,
                      fill_value=255,
                      always_apply=False,
                      p=0.8),
             A.Equalize(p=1),
             A.HueSaturationValue(hue_shift_limit=50,
                                  sat_shift_limit=50,
                                  val_shift_limit=50,
                                  always_apply=False,
                                  p=0.8),
             A.OneOf([
                 A.RandomFog(fog_coef_lower=0.3,
                             fog_coef_upper=0.7,
                             alpha_coef=0.08,
                             always_apply=False,
                             p=0.5),
                 A.RandomSnow(snow_point_lower=0.1,
                              snow_point_upper=0.3,
                              brightness_coeff=2.5,
                              always_apply=False,
                              p=0.5),
                 A.RandomSunFlare(flare_roi=(0, 0, 1, 0.5),
                                  angle_lower=0,
                                  angle_upper=1,
                                  num_flare_circles_lower=6,
                                  num_flare_circles_upper=10,
                                  src_radius=400,
                                  src_color=(255, 255, 255),
                                  always_apply=False,
                                  p=0.5),
                 A.RandomRain(slant_lower=-10,
                              slant_upper=10,
                              drop_length=20,
                              drop_width=1,
                              drop_color=(200, 200, 200),
                              blur_value=7,
                              brightness_coefficient=0.7,
                              rain_type=None,
                              always_apply=False,
                              p=0.5)
             ]),
             A.OneOf([
                 A.RandomSizedBBoxSafeCrop(720,
                                           960,
                                           erosion_rate=0.0,
                                           interpolation=1,
                                           always_apply=False,
                                           p=0.5),
                 A.RandomSizedBBoxSafeCrop(480,
                                           640,
                                           erosion_rate=0.0,
                                           interpolation=1,
                                           always_apply=False,
                                           p=0.5),
                 A.RandomSizedBBoxSafeCrop(240,
                                           320,
                                           erosion_rate=0.0,
                                           interpolation=1,
                                           always_apply=False,
                                           p=0.5),
             ]),
         ])
     else:
         trans_color_level = A.Compose([
             A.Cutout(num_holes=20,
                      max_h_size=64,
                      max_w_size=64,
                      fill_value=255,
                      always_apply=False,
                      p=0.5),
             A.Equalize(p=1),
             A.HueSaturationValue(hue_shift_limit=50,
                                  sat_shift_limit=50,
                                  val_shift_limit=50,
                                  always_apply=False,
                                  p=0.5),
             A.OneOf([
                 A.RandomSizedBBoxSafeCrop(720,
                                           960,
                                           erosion_rate=0.0,
                                           interpolation=1,
                                           always_apply=False,
                                           p=0.5),
                 A.RandomSizedBBoxSafeCrop(480,
                                           640,
                                           erosion_rate=0.0,
                                           interpolation=1,
                                           always_apply=False,
                                           p=0.5),
                 A.RandomSizedBBoxSafeCrop(240,
                                           320,
                                           erosion_rate=0.0,
                                           interpolation=1,
                                           always_apply=False,
                                           p=0.5),
             ]),
         ])
     #Spatial_Level
     if self.cfg.DATA_LOADER.AUGMENTATION_SPATIAL_LEVEL:
         trans_rotate_level = A.Compose([
             A.OneOf([
                 A.Rotate(limit=90,
                          interpolation=1,
                          border_mode=4,
                          value=None,
                          mask_value=None,
                          always_apply=False,
                          p=0.5),
                 A.RandomRotate90(always_apply=False, p=0.5),
                 A.VerticalFlip(always_apply=False, p=0.5),
                 A.HorizontalFlip(always_apply=False, p=0.5)
             ]),
         ])
     #Apply the trans
     aug = get_aug(trans_color_level)
     augmented = aug(**annotations)
     img = augmented['image']
     bbox = augmented['bboxes']
     bbox = np.array(bbox)
     label = augmented['category_id']
     #try rotate
     if self.cfg.DATA_LOADER.AUGMENTATION_SPATIAL_LEVEL:
         aug1 = get_aug(trans_rotate_level)
         augmented1 = aug1(**augmented)
         img1 = augmented1['image']
         bbox1 = augmented1['bboxes']
         bbox1 = np.array(bbox1)
         label1 = augmented1['category_id']
         #if rotate fail
         if bbox1.shape[0] == 0:
             return img, bbox.astype(np.float32), np.array(label)
         else:
             return img1, bbox1.astype(np.float32), np.array(label1)
     else:
         return img, bbox.astype(np.float32), np.array(label)
Пример #20
0
    def set_transforms(self) -> dict:

        d4_tansforms = [
            A.SmallestMaxSize(self.img_size[0], interpolation=0, p=1.),
            # D4 Group augmentations
            A.HorizontalFlip(p=0.5),
            A.VerticalFlip(p=0.5),
            A.RandomRotate90(p=0.5),
            A.Transpose(p=0.5),
        ]

        tensor_norm = [
            ToTensor(),
            Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
        ]

        geometric = [
            A.SmallestMaxSize(self.img_size[0], interpolation=0, p=1.),
            A.ShiftScaleRotate(shift_limit=self.shift_limit,
                               self.scale_limit,
                               rotate_limit=self.rotate_limit,
                               interpolation=cv2.INTER_LINEAR,
                               border_mode=cv2.BORDER_CONSTANT,
                               value=0,
                               mask_value=0,
                               p=0.5),
            # crop and resize
            A.RandomSizedCrop(
                (self.crop_size[0],
                 min(self.crop_size[1], self.img_size[0], self.img_size[1])),
                self.img_size[0],
                self.img_size[1],
                w2h_ratio=1.0,
                interpolation=cv2.INTER_LINEAR,
                always_apply=False,
                p=0.2),
        ]

        resize_crop = [
            A.SmallestMaxSize(max(self.img_size[0], self.img_size[1]),
                              interpolation=0,
                              p=1.),
            A.RandomCrop(self.img_size[0], self.img_size[1], p=1.),
        ]

        train_light = [
            A.SmallestMaxSize(self.img_size[0], interpolation=0, p=1.),
            A.RandomCrop(self.img_size[0], self.img_size[1], p=1.),
            A.HorizontalFlip(p=0.5),
            A.RandomBrightnessContrast(p=0.5),
        ]

        train_medium = train_light.append([
            A.ShiftScaleRotate(shift_limit=self.shift_limit,
                               self.scale_limit,
                               rotate_limit=self.rotate_limit,
                               p=0.5),
            A.OneOf([
                A.RandomBrightnessContrast(p=0.7),
                A.Equalize(p=0.3),
                A.HueSaturationValue(p=0.5),
                A.RGBShift(p=0.5),
                A.RandomGamma(p=0.4),
                A.ChannelShuffle(p=0.05),
            ],
                    p=0.9),
            A.OneOf([
                A.GaussNoise(p=0.5),
                A.ISONoise(p=0.5),
                A.MultiplicativeNoise(0.5),
            ],
                    p=0.2),
        ])

        valid_ade = [
            A.SmallestMaxSize(self.img_size, p=1.),
            A.Lambda(name="Pad32", image=pad_x32, mask=pad_x32),
        ]

        # from bloodaxe
        # https://github.com/BloodAxe/Catalyst-Inria-Segmentation-Example/blob/master/inria/augmentations.py
        crop = [  #(image_size: Tuple[int, int], min_scale=0.75, max_scale=1.25, input_size=5000):
            A.OneOrOther(
                A.RandomSizedCrop((self.crop_size[0],
                                   min(self.crop_size[1], self.img_size[0],
                                       self.img_size[1])), self.img_size[0],
                                  self.img_size[1]),
                A.CropNonEmptyMaskIfExists(self.img_size[0], self.img_size[1]),
            )
        ]

        safe_augmentations = [A.HorizontalFlip(), A.RandomBrightnessContrast()]

        light_augmentations = [
            A.HorizontalFlip(),
            A.RandomBrightnessContrast(),
            A.OneOf([
                A.ShiftScaleRotate(scale_limit=self.scale_limit,
                                   rotate_limit=self.rotate_limit,
                                   border_mode=cv2.BORDER_CONSTANT),
                A.IAAAffine(),
                A.IAAPerspective(),
                A.NoOp()
            ]),
            A.HueSaturationValue(),
        ]

        medium_augmentations = [
            A.HorizontalFlip(),
            A.ShiftScaleRotate(scale_limit=self.scale_limit,
                               rotate_limit=self.rotate_limit,
                               border_mode=cv2.BORDER_CONSTANT),
            # Add occasion blur/sharpening
            A.OneOf([A.GaussianBlur(),
                     A.IAASharpen(),
                     A.NoOp()]),
            # Spatial-preserving augmentations:
            A.OneOf(
                [A.CoarseDropout(),
                 A.MaskDropout(max_objects=5),
                 A.NoOp()]),
            A.GaussNoise(),
            A.OneOf([
                A.RandomBrightnessContrast(),
                A.CLAHE(),
                A.HueSaturationValue(),
                A.RGBShift(),
                A.RandomGamma()
            ]),
            # Weather effects
            A.RandomFog(fog_coef_lower=0.01, fog_coef_upper=0.3, p=0.1),
        ]

        hard_augmentations = [
            A.RandomRotate90(),
            A.Transpose(),
            A.RandomGridShuffle(),
            A.ShiftScaleRotate(scale_limit=self.scale_limit,
                               rotate_limit=self.rotate_limit,
                               border_mode=cv2.BORDER_CONSTANT,
                               mask_value=0,
                               value=0),
            A.ElasticTransform(border_mode=cv2.BORDER_CONSTANT,
                               alpha_affine=5,
                               mask_value=0,
                               value=0),
            # Add occasion blur
            A.OneOf([
                A.GaussianBlur(),
                A.GaussNoise(),
                A.IAAAdditiveGaussianNoise(),
                A.NoOp()
            ]),
            # D4 Augmentations
            A.OneOf(
                [A.CoarseDropout(),
                 A.MaskDropout(max_objects=10),
                 A.NoOp()]),
            # Spatial-preserving augmentations:
            A.OneOf([
                A.RandomBrightnessContrast(brightness_by_max=True),
                A.HueSaturationValue(),
                A.RGBShift(),
                A.RandomGamma(),
                A.NoOp(),
            ]),
            # Weather effects
            A.OneOf([
                A.RandomFog(fog_coef_lower=0.01, fog_coef_upper=0.3, p=0.1),
                A.NoOp()
            ]),
        ]

        TRANSFORMS = {
            "d4": d4_tansforms,
            "resize_crop": resize_crop,
            "geometric": geometric,
            "light": train_light,
            "medium": train_medium,
            "ade_valid": valid_ade,
            "flip_bright": safe_augmentations,
            "crop": crop,
            "inria_light": light_augmentations,
            "inria_medium": medium_augmentations,
            "inria_hard": hard_augmentations,
            "inria_valid": safe_augmentations,
        }

        return TRANSFORMS

        def get_transforms(self):

            augs = []
            if self.augs_name:
                augs = self.set_transforms[self.augs_name]

            augs.append(
                A.Resize(height=self.img_size[0],
                         width=self.img_size[1],
                         p=1.0))

            if self.use_d4:
                augs.append(self.set_transforms["d4"])

            if self.vflip:
                augs.append(A.VerticalFlip(p=0.5))
            if self.hflip:
                augs.append(A.HorizontalFlip(p=0.5))

            if self.normalise:
                augs.append(A.Normalize())

            return A.Compose(augs)
Пример #21
0
    def __init__(self,
                 path,
                 img_size=640,
                 batch_size=16,
                 augment=False,
                 hyp=None,
                 rect=False,
                 image_weights=False,
                 cache_images=False,
                 single_cls=False,
                 stride=32,
                 pad=0.0,
                 rank=-1):
        self.img_size = img_size
        self.augment = augment
        self.hyp = hyp
        self.image_weights = image_weights
        self.rect = False if image_weights else rect
        self.mosaic = self.augment and not self.rect  # load 4 images at a time into a mosaic (only during training)
        self.mosaic_border = [-img_size // 2, -img_size // 2]
        self.stride = stride
        self.albuAug = A.Compose([
            A.Blur((3, 6), p=0.07),
            A.CLAHE((1, 4), (8, 8), p=0.07),
            A.ChannelShuffle(p=0),
            A.Equalize(always_apply=False, p=0.07, mode='cv',
                       by_channels=True),
            A.GaussNoise(always_apply=False,
                         p=0.07,
                         var_limit=(144.739990234375, 266.4499816894531)),
            A.HueSaturationValue(always_apply=False,
                                 p=0.07,
                                 hue_shift_limit=(-20, 20),
                                 sat_shift_limit=(-30, 30),
                                 val_shift_limit=(-20, 20)),
            A.ISONoise(always_apply=False,
                       p=0.07,
                       intensity=(0.1, 0.5),
                       color_shift=(0.01, 0.05)),
            A.ImageCompression(always_apply=False,
                               p=0.07,
                               quality_lower=25,
                               quality_upper=66,
                               compression_type=1),
            A.JpegCompression(always_apply=False,
                              p=0.07,
                              quality_lower=23,
                              quality_upper=45),
            A.MotionBlur(always_apply=False, p=0.07, blur_limit=(3, 7)),
            A.MultiplicativeNoise(always_apply=False,
                                  p=0.07,
                                  multiplier=(0.9, 1.1),
                                  per_channel=True,
                                  elementwise=True),
            A.RandomBrightness(always_apply=False, p=0.07, limit=(-0.2, 0.2)),
            A.RandomBrightnessContrast(always_apply=False,
                                       p=0.07,
                                       brightness_limit=(-0.2, 0.2),
                                       contrast_limit=(-0.2, 0.2),
                                       brightness_by_max=True)
        ])

        try:
            f = []  # image files
            for p in path if isinstance(path, list) else [path]:
                p = Path(p)  # os-agnostic
                if p.is_dir():  # dir
                    f += glob.glob(str(p / '**' / '*.*'), recursive=True)
                elif p.is_file():  # file
                    with open(p, 'r') as t:
                        t = t.read().strip().splitlines()
                        parent = str(p.parent) + os.sep
                        f += [
                            x.replace('./', parent)
                            if x.startswith('./') else x for x in t
                        ]  # local to global path
                else:
                    raise Exception('%s does not exist' % p)
            self.img_files = sorted([
                x.replace('/', os.sep) for x in f
                if x.split('.')[-1].lower() in img_formats
            ])
            assert self.img_files, 'No images found'
        except Exception as e:
            raise Exception('Error loading data from %s: %s\nSee %s' %
                            (path, e, help_url))

        # Check cache
        self.label_files = img2label_paths(self.img_files)  # labels
        cache_path = Path(self.label_files[0]).parent.with_suffix(
            '.cache')  # cached labels
        if cache_path.is_file():
            cache = torch.load(cache_path)  # load
            if cache['hash'] != get_hash(
                    self.label_files +
                    self.img_files) or 'results' not in cache:  # changed
                cache = self.cache_labels(cache_path)  # re-cache
        else:
            cache = self.cache_labels(cache_path)  # cache

        # Display cache
        [nf, nm, ne, nc,
         n] = cache.pop('results')  # found, missing, empty, corrupted, total
        desc = f"Scanning '{cache_path}' for images and labels... {nf} found, {nm} missing, {ne} empty, {nc} corrupted"
        tqdm(None, desc=desc, total=n, initial=n)
        assert nf > 0 or not augment, f'No labels found in {cache_path}. Can not train without labels. See {help_url}'

        # Read cache
        cache.pop('hash')  # remove hash
        labels, shapes = zip(*cache.values())
        self.labels = list(labels)
        self.shapes = np.array(shapes, dtype=np.float64)
        self.img_files = list(cache.keys())  # update
        self.label_files = img2label_paths(cache.keys())  # update
        if single_cls:
            for x in self.labels:
                x[:, 0] = 0

        n = len(shapes)  # number of images
        bi = np.floor(np.arange(n) / batch_size).astype(np.int)  # batch index
        nb = bi[-1] + 1  # number of batches
        self.batch = bi  # batch index of image
        self.n = n
        self.indices = range(n)

        # Rectangular Training
        if self.rect:
            # Sort by aspect ratio
            s = self.shapes  # wh
            ar = s[:, 1] / s[:, 0]  # aspect ratio
            irect = ar.argsort()
            self.img_files = [self.img_files[i] for i in irect]
            self.label_files = [self.label_files[i] for i in irect]
            self.labels = [self.labels[i] for i in irect]
            self.shapes = s[irect]  # wh
            ar = ar[irect]

            # Set training image shapes
            shapes = [[1, 1]] * nb
            for i in range(nb):
                ari = ar[bi == i]
                mini, maxi = ari.min(), ari.max()
                if maxi < 1:
                    shapes[i] = [maxi, 1]
                elif mini > 1:
                    shapes[i] = [1, 1 / mini]

            self.batch_shapes = np.ceil(
                np.array(shapes) * img_size / stride + pad).astype(
                    np.int) * stride

        # Cache images into memory for faster training (WARNING: large datasets may exceed system RAM)
        self.imgs = [None] * n
        if cache_images:
            gb = 0  # Gigabytes of cached images
            self.img_hw0, self.img_hw = [None] * n, [None] * n
            results = ThreadPool(8).imap(lambda x: load_image(*x),
                                         zip(repeat(self),
                                             range(n)))  # 8 threads
            pbar = tqdm(enumerate(results), total=n)
            for i, x in pbar:
                self.imgs[i], self.img_hw0[i], self.img_hw[
                    i] = x  # img, hw_original, hw_resized = load_image(self, i)
                gb += self.imgs[i].nbytes
                pbar.desc = 'Caching images (%.1fGB)' % (gb / 1E9)
Пример #22
0
def get_augmentation(version):
    if version == "v1":
        return {
            "train":
            A.Compose([
                A.Flip(p=0.5),
                A.Rotate(p=0.5),
                A.Resize(height=256, width=256, p=1.0),
                A.Normalize(mean=(0.623, 0.520, 0.650),
                            std=(0.278, 0.305, 0.274),
                            max_pixel_value=255.0,
                            p=1.0)
            ]),
            "valid":
            A.Compose([
                A.Resize(height=256, width=256, p=1.0),
                A.Normalize(mean=(0.623, 0.520, 0.650),
                            std=(0.278, 0.305, 0.274),
                            max_pixel_value=255.0,
                            p=1.0)
            ]),
        }

    elif version == "v2":
        return {
            "train":
            A.Compose([
                A.Flip(p=0.5),
                A.Rotate(p=0.5),
                A.OneOf([
                    A.RandomCrop(height=256, width=256, p=1),
                    A.RandomCrop(height=384, width=384, p=1),
                    A.RandomCrop(height=512, width=512, p=1),
                    A.RandomCrop(height=640, width=640, p=1),
                ],
                        p=0.5),
                A.Resize(height=256, width=256, p=1.0),
                A.Normalize(mean=(0.623, 0.520, 0.650),
                            std=(0.278, 0.305, 0.274),
                            max_pixel_value=255.0,
                            p=1.0)
            ]),
            "valid":
            A.Compose([
                A.Resize(height=256, width=256, p=1.0),
                A.Normalize(mean=(0.623, 0.520, 0.650),
                            std=(0.278, 0.305, 0.274),
                            max_pixel_value=255.0,
                            p=1.0)
            ]),
        }

    elif version == "v3":
        return {
            "train":
            A.Compose([
                A.RandomCrop(height=1024, width=1024, p=1),
                A.Flip(p=0.5),
                A.Rotate(p=0.5),
                A.Resize(height=256, width=256, p=1.0),
                A.Normalize(mean=(0.623, 0.520, 0.650),
                            std=(0.278, 0.305, 0.274),
                            max_pixel_value=255.0,
                            p=1.0)
            ]),
            "valid":
            A.Compose([
                A.Resize(height=256, width=256, p=1.0),
                A.Normalize(mean=(0.623, 0.520, 0.650),
                            std=(0.278, 0.305, 0.274),
                            max_pixel_value=255.0,
                            p=1.0)
            ]),
        }

    elif version == "v4":
        # for 3x-scaled dataset | 256x256
        return {
            "train":
            A.Compose([
                A.RandomCrop(height=512, width=512, p=1),
                A.Flip(p=0.5),
                A.Rotate(p=0.5),
                A.Resize(height=256, width=256, p=1.0),
                A.Normalize(mean=(0.623, 0.520, 0.650),
                            std=(0.278, 0.305, 0.274),
                            max_pixel_value=255.0,
                            p=1.0)
            ]),
            "valid":
            A.Compose([
                A.Resize(height=256, width=256, p=1.0),
                A.Normalize(mean=(0.623, 0.520, 0.650),
                            std=(0.278, 0.305, 0.274),
                            max_pixel_value=255.0,
                            p=1.0)
            ]),
        }

    elif version == "v5":
        # for 3x-scaled dataset | 512x512
        return {
            "train":
            A.Compose([
                A.RandomCrop(height=512, width=512, p=1),
                A.Flip(p=0.5),
                A.Rotate(p=0.5),
                A.Normalize(mean=(0.623, 0.520, 0.650),
                            std=(0.278, 0.305, 0.274),
                            max_pixel_value=255.0,
                            p=1.0)
            ]),
            "valid":
            A.Compose([
                A.Normalize(mean=(0.623, 0.520, 0.650),
                            std=(0.278, 0.305, 0.274),
                            max_pixel_value=255.0,
                            p=1.0)
            ]),
        }

    elif version == "v6":
        # for 3x-scaled dataset | 512x512
        return {
            "train":
            A.Compose([
                A.Flip(p=0.5),
                A.Rotate(p=0.5),
                A.HueSaturationValue(hue_shift_limit=20,
                                     sat_shift_limit=30,
                                     val_shift_limit=20,
                                     always_apply=False,
                                     p=0.25),
                A.RandomBrightness(limit=0.4, always_apply=False, p=0.25),
                A.RandomContrast(limit=0.2, always_apply=False, p=0.25),
                A.RandomShadow(shadow_roi=(0, 0, 1, 1),
                               num_shadows_lower=1,
                               num_shadows_upper=50,
                               shadow_dimension=5,
                               always_apply=False,
                               p=0.25),
                A.Normalize(mean=(0.623, 0.520, 0.650),
                            std=(0.278, 0.305, 0.274),
                            max_pixel_value=255.0,
                            p=1.0)
            ]),
            "valid":
            A.Compose([
                A.Normalize(mean=(0.623, 0.520, 0.650),
                            std=(0.278, 0.305, 0.274),
                            max_pixel_value=255.0,
                            p=1.0)
            ]),
        }

    elif version == "v7":
        # for 3x-scaled dataset | 512x512
        return {
            "train":
            A.Compose([
                A.Flip(p=0.5),
                A.Rotate(p=0.5),
                A.RandomCrop(height=768, width=768, p=1),
                A.Resize(height=256, width=256, p=1.0),
                A.HueSaturationValue(hue_shift_limit=20,
                                     sat_shift_limit=30,
                                     val_shift_limit=20,
                                     always_apply=False,
                                     p=0.25),
                A.RandomBrightness(limit=0.4, always_apply=False, p=0.25),
                A.RandomContrast(limit=0.2, always_apply=False, p=0.25),
                A.RandomShadow(shadow_roi=(0, 0, 1, 1),
                               num_shadows_lower=1,
                               num_shadows_upper=50,
                               shadow_dimension=5,
                               always_apply=False,
                               p=0.25),
                A.Normalize(mean=(0.623, 0.520, 0.650),
                            std=(0.278, 0.305, 0.274),
                            max_pixel_value=255.0,
                            p=1.0)
            ]),
            "valid":
            A.Compose([
                A.Resize(height=256, width=256, p=1.0),
                A.Normalize(mean=(0.623, 0.520, 0.650),
                            std=(0.278, 0.305, 0.274),
                            max_pixel_value=255.0,
                            p=1.0)
            ]),
        }

    elif version == "v8":
        # for 3x-scaled dataset | 512x512
        return {
            "train":
            A.Compose([
                A.Rotate(p=0.5),
                A.RandomCrop(height=512, width=512, p=1),
                A.Flip(p=0.5),

                # color
                A.HueSaturationValue(hue_shift_limit=20,
                                     sat_shift_limit=30,
                                     val_shift_limit=20,
                                     always_apply=False,
                                     p=0.25),
                A.RandomBrightness(limit=0.4, always_apply=False, p=0.25),
                A.RandomContrast(limit=0.2, always_apply=False, p=0.25),
                A.RandomShadow(shadow_roi=(0, 0, 1, 1),
                               num_shadows_lower=1,
                               num_shadows_upper=50,
                               shadow_dimension=5,
                               always_apply=False,
                               p=0.25),

                # transform
                A.ElasticTransform(p=1, alpha=120, sigma=6, alpha_affine=0.25),
                A.GridDistortion(p=0.25),
                A.OpticalDistortion(distort_limit=2, shift_limit=0.5, p=0.25),
                A.Normalize(mean=(0.623, 0.520, 0.650),
                            std=(0.278, 0.305, 0.274),
                            max_pixel_value=255.0,
                            p=1.0)
            ]),
            "valid":
            A.Compose([
                A.Normalize(mean=(0.623, 0.520, 0.650),
                            std=(0.278, 0.305, 0.274),
                            max_pixel_value=255.0,
                            p=1.0)
            ]),
        }

    elif version == "v9":
        # for 3x-scaled dataset | 512x512
        return {
            "train":
            A.Compose([
                A.Flip(p=0.5),
                A.Rotate(p=0.5),
                A.HueSaturationValue(hue_shift_limit=20,
                                     sat_shift_limit=30,
                                     val_shift_limit=20,
                                     always_apply=False,
                                     p=0.25),
                A.RandomBrightness(limit=0.4, always_apply=False, p=0.25),
                A.RandomContrast(limit=0.2, always_apply=False, p=0.25),
                A.RandomShadow(shadow_roi=(0, 0, 1, 1),
                               num_shadows_lower=1,
                               num_shadows_upper=50,
                               shadow_dimension=5,
                               always_apply=False,
                               p=0.25),

                # transform
                A.OneOf([
                    A.ElasticTransform(
                        alpha=120, sigma=6, alpha_affine=0.25, p=0.25),
                    A.GridDistortion(p=0.25),
                    A.OpticalDistortion(
                        distort_limit=2, shift_limit=0.5, p=0.25)
                ],
                        p=0.75),
                A.Normalize(mean=(0.623, 0.520, 0.650),
                            std=(0.278, 0.305, 0.274),
                            max_pixel_value=255.0,
                            p=1.0)
            ]),
            "valid":
            A.Compose([
                A.Normalize(mean=(0.623, 0.520, 0.650),
                            std=(0.278, 0.305, 0.274),
                            max_pixel_value=255.0,
                            p=1.0)
            ]),
        }

    elif version == "v10":
        # for 3x-scaled dataset | 512x512
        return {
            "train":
            A.Compose([
                A.Flip(p=0.5),
                A.Rotate(p=0.5),

                # size
                A.OneOf([
                    A.CropNonEmptyMaskIfExists(height=128, width=128, p=1.0),
                    A.CropNonEmptyMaskIfExists(height=256, width=256, p=1.0),
                    A.CropNonEmptyMaskIfExists(height=384, width=384, p=1.0)
                ],
                        p=0.25),
                A.PadIfNeeded(min_height=512,
                              min_width=512,
                              border_mode=4,
                              p=1),

                # array shuffle
                A.OneOf([A.MaskDropout(p=1),
                         A.RandomGridShuffle(p=1)], p=0.5),

                # quality
                A.Downscale(scale_min=0.25,
                            scale_max=0.75,
                            interpolation=0,
                            always_apply=False,
                            p=0.5),
                A.GaussNoise(p=0.5),
                A.OneOf([
                    A.GlassBlur(p=1),
                    A.GaussianBlur(p=1),
                ], p=0.5),

                # colors
                A.HueSaturationValue(hue_shift_limit=20,
                                     sat_shift_limit=30,
                                     val_shift_limit=20,
                                     always_apply=False,
                                     p=0.5),
                A.RandomBrightness(limit=0.4, always_apply=False, p=0.5),
                A.RandomContrast(limit=0.2, always_apply=False, p=0.5),
                A.RandomShadow(shadow_roi=(0, 0, 1, 1),
                               num_shadows_lower=1,
                               num_shadows_upper=50,
                               shadow_dimension=5,
                               always_apply=False,
                               p=0.5),
                A.CLAHE(p=0.5),
                A.Equalize(p=0.5),
                A.ChannelShuffle(p=0.5),

                # transform
                A.OneOf([
                    A.ElasticTransform(
                        alpha=120, sigma=6, alpha_affine=0.25, p=1),
                    A.GridDistortion(p=1),
                    A.OpticalDistortion(distort_limit=2, shift_limit=0.5, p=1)
                ],
                        p=0.5),
                A.Normalize(mean=(0.623, 0.520, 0.650),
                            std=(0.278, 0.305, 0.274),
                            max_pixel_value=255.0,
                            p=1.0)
            ]),
            "valid":
            A.Compose([
                A.Normalize(mean=(0.623, 0.520, 0.650),
                            std=(0.278, 0.305, 0.274),
                            max_pixel_value=255.0,
                            p=1.0)
            ]),
        }

    elif version == "v11":
        # custom normalization (see other/img_normalization.py)
        return {
            "train":
            A.Compose([
                A.Normalize(mean=(0.623, 0.520, 0.650),
                            std=(0.278, 0.305, 0.274),
                            max_pixel_value=255.0,
                            p=1.0)
            ]),
            "valid":
            A.Compose([
                A.Normalize(mean=(0.623, 0.520, 0.650),
                            std=(0.278, 0.305, 0.274),
                            max_pixel_value=255.0,
                            p=1.0)
            ]),
        }

    elif version == "v12":
        # for 3x-scaled dataset | 512x512
        return {
            "train":
            A.Compose([
                A.Flip(p=0.5),
                A.Rotate(p=0.5),

                # size / quality
                A.OneOf([
                    A.CropNonEmptyMaskIfExists(height=128, width=128, p=1.0),
                    A.CropNonEmptyMaskIfExists(height=256, width=256, p=1.0),
                    A.CropNonEmptyMaskIfExists(height=384, width=384, p=1.0),
                    A.Downscale(scale_min=0.25,
                                scale_max=0.75,
                                interpolation=0,
                                always_apply=False,
                                p=1.0),
                ],
                        p=0.25),
                A.PadIfNeeded(min_height=512,
                              min_width=512,
                              border_mode=4,
                              p=1),

                # array shuffle
                A.OneOf([A.MaskDropout(p=1),
                         A.RandomGridShuffle(p=1)], p=0.15),

                # noise
                A.OneOf([
                    A.GaussNoise(p=1),
                    A.GlassBlur(p=1),
                    A.GaussianBlur(p=1),
                ],
                        p=0.15),

                # colors
                A.HueSaturationValue(hue_shift_limit=20,
                                     sat_shift_limit=30,
                                     val_shift_limit=20,
                                     always_apply=False,
                                     p=0.15),
                A.RandomBrightness(limit=0.4, always_apply=False, p=0.15),
                A.RandomContrast(limit=0.2, always_apply=False, p=0.15),
                A.RandomShadow(shadow_roi=(0, 0, 1, 1),
                               num_shadows_lower=1,
                               num_shadows_upper=50,
                               shadow_dimension=5,
                               always_apply=False,
                               p=0.15),
                A.OneOf([
                    A.CLAHE(p=1),
                    A.Equalize(p=1),
                    A.ChannelShuffle(p=1),
                ],
                        p=0.15),

                # transform
                A.OneOf([
                    A.ElasticTransform(
                        alpha=120, sigma=6, alpha_affine=0.25, p=1),
                    A.GridDistortion(p=1),
                    A.OpticalDistortion(distort_limit=2, shift_limit=0.5, p=1)
                ],
                        p=0.15),
                A.Normalize(mean=(0.623, 0.520, 0.650),
                            std=(0.278, 0.305, 0.274),
                            max_pixel_value=255.0,
                            p=1.0)
            ]),
            "valid":
            A.Compose([
                A.Normalize(mean=(0.623, 0.520, 0.650),
                            std=(0.278, 0.305, 0.274),
                            max_pixel_value=255.0,
                            p=1.0)
            ]),
        }

    else:
        raise Exception(f"Augmentation version '{version}' is UNKNOWN!")
def get_train_transforms_mmdetection(input_size,
                                     use_crop=False,
                                     use_no_color_aug=False,
                                     use_center_crop=False,
                                     center_crop_ratio=0.9,
                                     use_gray=False):
    if isinstance(input_size, int):
        input_size = (input_size[0], input_size[1])
    return al.Compose([
        al.RandomResizedCrop(height=input_size[0],
                             width=input_size[1],
                             scale=(0.4, 1.0),
                             interpolation=0,
                             p=0.5),
        al.Resize(input_size[0], input_size[1], p=1.0),
        al.HorizontalFlip(p=0.5),
        al.OneOf([
            al.ShiftScaleRotate(border_mode=0,
                                shift_limit=(-0.2, 0.2),
                                scale_limit=(-0.2, 0.2),
                                rotate_limit=(-20, 20)),
            al.OpticalDistortion(border_mode=0,
                                 distort_limit=[-0.5, 0.5],
                                 shift_limit=[-0.5, 0.5]),
            al.GridDistortion(
                num_steps=5, distort_limit=[-0., 0.3], border_mode=0),
            al.ElasticTransform(border_mode=0),
            al.IAAPerspective(),
            al.RandomGridShuffle()
        ],
                 p=0.1),
        al.Rotate(limit=(-25, 25), border_mode=0, p=0.1),
        al.OneOf([
            al.RandomBrightnessContrast(brightness_limit=(-0.2, 0.2),
                                        contrast_limit=(-0.2, 0.2)),
            al.HueSaturationValue(hue_shift_limit=(-20, 20),
                                  sat_shift_limit=(-30, 30),
                                  val_shift_limit=(-20, 20)),
            al.RandomGamma(gamma_limit=(30, 150)),
            al.RGBShift(),
            al.CLAHE(clip_limit=(1, 15)),
            al.ChannelShuffle(),
            al.InvertImg(),
        ],
                 p=0.1),
        al.RandomSnow(p=0.05),
        al.RandomRain(p=0.05),
        al.RandomFog(p=0.05),
        al.RandomSunFlare(num_flare_circles_lower=1,
                          num_flare_circles_upper=2,
                          src_radius=110,
                          p=0.05),
        al.RandomShadow(p=0.05),
        al.GaussNoise(var_limit=(10, 20), p=0.05),
        al.ISONoise(color_shift=(0, 15), p=0.05),
        al.MultiplicativeNoise(p=0.05),
        al.OneOf([
            al.ToGray(p=1. if use_gray else 0.05),
            al.ToSepia(p=0.05),
            al.Solarize(p=0.05),
            al.Equalize(p=0.05),
            al.Posterize(p=0.05),
            al.FancyPCA(p=0.05),
        ],
                 p=0.05),
        al.OneOf([
            al.MotionBlur(blur_limit=(3, 7)),
            al.Blur(blur_limit=(3, 7)),
            al.MedianBlur(blur_limit=3),
            al.GaussianBlur(blur_limit=3),
        ],
                 p=0.05),
        al.CoarseDropout(p=0.05),
        al.Cutout(num_holes=30,
                  max_h_size=37,
                  max_w_size=37,
                  fill_value=0,
                  p=0.05),
        al.GridDropout(p=0.05),
        al.ChannelDropout(p=0.05),
        al.Downscale(scale_min=0.5, scale_max=0.9, p=0.1),
        al.ImageCompression(quality_lower=60, p=0.2),
        al.Normalize(),
        ToTensorV2()
    ])
Пример #24
0
def equalize(m):
    return albu.Equalize(
        mode='pil',
        p=1)
            image = self.transforms(image=image)['image']

        return image, torch.LongTensor([label])


df = pd.read_excel('SFEW.xlsx')
df = df.sample(frac=1.0, random_state=random_seed)

transforms_train = A.Compose([
    A.HorizontalFlip(p=0.5),
    A.Rotate(limit=15, p=0.5),
    A.RandomResizedCrop(height=img_size,
                        width=img_size,
                        scale=(0.9, 1.0),
                        p=1.0),
    A.Equalize(p=0.5),
    A.Normalize(p=1.0),
    ToTensorV2(p=1.0),
])

transforms_eval = A.Compose([
    A.Resize(height=img_size, width=img_size, p=1.0),
    A.Normalize(p=1.0),
    ToTensorV2(p=1.0),
])

train_index = int(len(df) * train_portion)
valid_index = train_index + int(len(df) * valid_portion)
train = df.iloc[:train_index]
valid = df.iloc[train_index:valid_index]
test = df.iloc[valid_index:]
def get_train_transforms_atopy(input_size,
                               use_crop=False,
                               use_no_color_aug=False):
    if use_crop:
        resize = [
            al.Resize(int(input_size * 1.2), int(input_size * 1.2)),
            al.RandomSizedCrop(min_max_height=(int(input_size * 0.6),
                                               int(input_size * 1.2)),
                               height=input_size,
                               width=input_size)
        ]
    else:
        resize = [al.Resize(input_size, input_size)]
    return al.Compose(resize + [
        al.Flip(p=0.5),
        al.OneOf([
            al.RandomRotate90(),
            al.Rotate(limit=180),
        ], p=0.5),
        al.OneOf([
            al.ShiftScaleRotate(),
            al.OpticalDistortion(),
            al.GridDistortion(),
            al.ElasticTransform(),
        ],
                 p=0.3),
        al.RandomGridShuffle(p=0.05),
        al.OneOf([
            al.RandomGamma(),
            al.HueSaturationValue(),
            al.RGBShift(),
            al.CLAHE(),
            al.ChannelShuffle(),
            al.InvertImg(),
        ],
                 p=0.1),
        al.RandomSnow(p=0.05),
        al.RandomRain(p=0.05),
        al.RandomFog(p=0.05),
        al.RandomSunFlare(p=0.05),
        al.RandomShadow(p=0.05),
        al.RandomBrightnessContrast(p=0.05),
        al.GaussNoise(p=0.2),
        al.ISONoise(p=0.2),
        al.MultiplicativeNoise(p=0.2),
        al.ToGray(p=0.05),
        al.ToSepia(p=0.05),
        al.Solarize(p=0.05),
        al.Equalize(p=0.05),
        al.Posterize(p=0.05),
        al.FancyPCA(p=0.05),
        al.OneOf([
            al.MotionBlur(blur_limit=3),
            al.Blur(blur_limit=3),
            al.MedianBlur(blur_limit=3),
            al.GaussianBlur(blur_limit=3),
        ],
                 p=0.05),
        al.CoarseDropout(p=0.05),
        al.Cutout(p=0.05),
        al.GridDropout(p=0.05),
        al.ChannelDropout(p=0.05),
        al.Downscale(p=0.1),
        al.ImageCompression(quality_lower=60, p=0.2),
        al.Normalize(),
        ToTensorV2()
    ])