Пример #1
0
def main():
    args = parser.parse_args()
    if args.num_classes == 1000:
        model = alexnet(pretrained=True).to("cuda:0")
        print("Load the official pre-training weight successfully.")
    else:
        model = AlexNet(num_classes=args.num_classes).to("cuda:0")
        model.load_state_dict(
            torch.load("/opt/tensorrt_models/torch/alexnet/alexnet.pth"))
        print("Load the specified pre-training weight successfully.")

    model.eval()

    f = open("/opt/tensorrt_models/torch/alexnet/alexnet.wts", "w")
    f.write("{}\n".format(len(model.state_dict().keys())))
    for k, v in model.state_dict().items():
        vr = v.reshape(-1).cpu().numpy()
        f.write("{} {}".format(k, len(vr)))
        for vv in vr:
            f.write(" ")
            f.write(struct.pack(">f", float(vv)).hex())
        f.write("\n")

    print(
        "The weight conversion has been completed and saved to `/opt/tensorrt_models/torch/alexnet/alexnet.wts`."
    )
Пример #2
0
def main_worker(gpu, ngpus_per_node, args):
    global best_acc1
    args.gpu = gpu

    if args.gpu is not None:
        print(f"Use GPU: {args.gpu} for training!")

    if args.distributed:
        if args.dist_url == "env://" and args.rank == -1:
            args.rank = int(os.environ["RANK"])
        if args.multiprocessing_distributed:
            # For multiprocessing distributed training, rank needs to be the
            # global rank among all the processes
            args.rank = args.rank * ngpus_per_node + gpu
        dist.init_process_group(backend=args.dist_backend,
                                init_method=args.dist_url,
                                world_size=args.world_size,
                                rank=args.rank)
    # create model
    if args.pretrained and args.num_classes == 1000:
        model = alexnet(pretrained=True)
        print(f"=> using pre-trained model")
    elif args.pretrained:
        print(f"=> creating model and Fine-tuning pre-trained model.")
        model = alexnet(pretrained=True)
        model.classifier = nn.Sequential(
            nn.Dropout(),
            nn.Linear(256 * 6 * 6, 4096),
            nn.ReLU(inplace=True),
            nn.Dropout(),
            nn.Linear(4096, 4096),
            nn.ReLU(inplace=True),
            nn.Linear(4096, args.num_classes),
        )
        args.lr = 0.01
    else:
        print(f"=> creating model.")
        model = AlexNet(num_classes=args.num_classes)

    if args.distributed:
        # For multiprocessing distributed, DistributedDataParallel constructor
        # should always set the single device scope, otherwise,
        # DistributedDataParallel will use all available devices.
        if args.gpu is not None:
            torch.cuda.set_device(args.gpu)
            model.cuda(args.gpu)
            # When using a single GPU per process and per
            # DistributedDataParallel, we need to divide the batch size
            # ourselves based on the total number of GPUs we have
            args.batch_size = int(args.batch_size / ngpus_per_node)
            args.workers = int(args.workers / ngpus_per_node)
            model = torch.nn.parallel.DistributedDataParallel(
                model, device_ids=[args.gpu])
        else:
            model.cuda()
            # DistributedDataParallel will divide and allocate batch_size to all
            # available GPUs if device_ids are not set
            model = torch.nn.parallel.DistributedDataParallel(model)
    elif args.gpu is not None:
        torch.cuda.set_device(args.gpu)
        model = model.cuda(args.gpu)
    else:
        # DataParallel will divide and allocate batch_size to all available
        # GPUs
        model.features = torch.nn.DataParallel(model.features)
        model.cuda()

    # define loss function (criterion) and optimizer
    criterion = nn.CrossEntropyLoss().cuda(args.gpu)

    optimizer = torch.optim.SGD(model.parameters(),
                                args.lr,
                                momentum=args.momentum,
                                weight_decay=args.weight_decay)

    # optionally resume from a checkpoint
    if args.resume:
        if os.path.isfile(args.resume):
            print(f"=> loading checkpoint `{args.resume}`")
            checkpoint = torch.load(args.resume)
            args.start_epoch = checkpoint["epoch"]
            best_acc1 = checkpoint["best_acc1"]
            if args.gpu is not None:
                # best_acc1 may be from a checkpoint from a different GPU
                best_acc1 = best_acc1.to(args.gpu)
            model.load_state_dict(checkpoint["state_dict"])
            optimizer.load_state_dict(checkpoint["optimizer"])
            print(
                f"=> loaded checkpoint `{args.resume}` (epoch {checkpoint['epoch']})"
            )
        else:
            print(f"=> no checkpoint found at `{args.resume}`")

    cudnn.benchmark = True

    # Data loading code
    traindir = os.path.join(args.data, "train")
    valdir = os.path.join(args.data, "val")
    normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                     std=[0.229, 0.224, 0.225])

    train_dataset = datasets.ImageFolder(traindir,
                                         transform=transforms.Compose([
                                             transforms.RandomResizedCrop(
                                                 args.image_size),
                                             transforms.RandomHorizontalFlip(),
                                             transforms.ToTensor(),
                                             normalize,
                                         ]))

    if args.distributed:
        train_sampler = torch.utils.data.distributed.DistributedSampler(
            train_dataset)
    else:
        train_sampler = None

    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=args.batch_size,
                                               shuffle=(train_sampler is None),
                                               num_workers=args.workers,
                                               pin_memory=True,
                                               sampler=train_sampler)

    val_transforms = transforms.Compose([
        transforms.Resize(256),
        transforms.CenterCrop(224),
        transforms.ToTensor(),
        normalize,
    ])
    print("Using image size", 224)

    val_loader = torch.utils.data.DataLoader(datasets.ImageFolder(
        valdir, val_transforms),
                                             batch_size=args.batch_size,
                                             shuffle=False,
                                             num_workers=args.workers,
                                             pin_memory=True)

    if args.evaluate:
        top1 = validate(val_loader, model, criterion, args)
        with open("res.txt", "w") as f:
            print(f"Acc@1: {top1}", file=f)
        return

    for epoch in range(args.start_epoch, args.epochs):
        if args.distributed:
            train_sampler.set_epoch(epoch)
        adjust_learning_rate(optimizer, epoch, args)

        # train for one epoch
        train(train_loader, model, criterion, optimizer, epoch, args)

        # evaluate on validation set
        acc1 = validate(val_loader, model, criterion, args)

        # remember best acc@1 and save checkpoint
        is_best = acc1 > best_acc1
        best_acc1 = max(acc1, best_acc1)

        if not args.multiprocessing_distributed or (
                args.multiprocessing_distributed
                and args.rank % ngpus_per_node == 0):
            save_checkpoint(
                {
                    "epoch": epoch + 1,
                    "state_dict": model.state_dict(),
                    "best_acc1": best_acc1,
                    "optimizer": optimizer.state_dict(),
                }, is_best)