def run(self): self.br=BGrate.calcBGrate(self.dbname,20,400,T0=600.0) self.burst=BurstSearch.findBurst(self.br,self.dbname,["All"]) self.burstSeff, self.burstFRET,self.wei,self.H,self.xedges, \ self.yedges=fretAndS.FretAndS(self.dbname,self.burst,(27,27),self.br) #self.timer.stop() self.viewbox.canvas.drawHist(self.H,self.xedges,self.yedges) if self.mainui is not None: print ("copy burst") self.mainui.burst=copy.deepcopy(self.burst) print(self.mainui.burst["SyncResolution"])
def main(comm, dbname, n_states, Sth): rank = comm.Get_rank() clsize = comm.Get_size() #print("============size=====",clsize) if rank == 0: br = BGrate.calcBGrate(dbname, 20, 400) burst = BurstSearch.findBurst(br, dbname, ["All"]) burstSeff, burstFRET, wei, H, xedges, yedges = fretAndS.FretAndS( dbname, burst, (27, 27), br) n_burst = len(burst["All"]['chl']) if n_burst < clsize: clsize = n_burst chunkLists = list(chunks(range(n_burst), clsize)) #gsml=GS_MLE(burst,0.891) #gsml.n_states=2 #gsml.MaxLikehood([0.3,0.7,0.2, 3,3,3, 3,3,3]) #endtime = datetime.datetime.now() #print (endtime - starttime) else: burst = dict() chunkLists = list() clsize = comm.bcast(clsize, root=0) burst = comm.bcast(burst, root=0) burstIdxRange = comm.scatter(chunkLists, root=0) #print(burstIdxRange,rank) gsml = GS_MLE(burst, comm, burstIdxRange, Sth) gsml.n_states = n_states params = [0.38, 0.6, 675.0, 325.0, 3, 3, 3, 3, 3] params = params[:n_states * n_states] #print(params) stop = [0] if rank == 0: gsml.MaxLikehood(params) #gsml.lnLikelihood(params,stop) else: while stop[0] == 0: gsml.lnLikelihood(params, stop)
return None matP = np.empty([n, 1]) ap = 0 for i in range(n): ap += matK[i, i] for i in range(n): matP[i, 0] = matK[i, i] / ap return matP if __name__ == '__main__': import matplotlib import datetime starttime = datetime.datetime.now() dbname = '/home/liuk/sf/oc/data/38.sqlite' dbname = 'E:/liuk/proj/ptu/data/55.sqlite' #dbname='E:/sf/oc/data/38.sqlite' dbname = "E:/dbox/sf/oc/data/1min.sqlite" br = BGrate.calcBGrate(dbname, 20, 400) burst = BurstSearch.findBurst(br, dbname, ["All"]) burstSeff, burstFRET, wei, H, xedges, yedges = fretAndS.FretAndS( dbname, burst, (27, 27), br) #matplotlib.pyplot.plot(burst["All"].s) gsml = GS_MLE(burst, 0.891) gsml.n_states = 3 gsml.MaxLikehood([0.3, 0.7, 0.2, 3, 3, 3, 3, 3, 3]) endtime = datetime.datetime.now() print(endtime - starttime)