Пример #1
0
 def __init__(self,
              services: Services,
              testing: BasicTesting = None) -> None:
     super().__init__(services, testing)
     start_vertex = Vertex(self._get_grid().agent.position)
     goal_vertex = Vertex(self._get_grid().goal.position)
     self._graph = Forest(start_vertex, goal_vertex, [])
Пример #2
0
    def _get_new_vertex(self, q_near: Vertex, q_sample: Point, max_dist) -> Vertex:
        dir = q_sample.to_tensor() - q_near.position.to_tensor()
        if torch.norm(dir) <= max_dist:
            return Vertex(q_sample)

        dir_normalized = dir / torch.norm(dir)
        q_new = Point.from_tensor(q_near.position.to_tensor() + max_dist * dir_normalized)
        return Vertex(q_new)
Пример #3
0
    def __init__(self,
                 services: Services,
                 testing: BasicTesting = None) -> None:
        super().__init__(services, testing)

        self._graph = gen_forest(self._services,
                                 Vertex(self._get_grid().agent.position),
                                 Vertex(self._get_grid().goal.position), [])
        self._graph.edges_removable = False
        self._init_displays()
Пример #4
0
    def __init__(self,
                 services: Services,
                 testing: BasicTesting = None) -> None:
        super().__init__(services, testing)

        start_vertex = Vertex(self._get_grid().agent.position)
        start_vertex.cost = 0
        goal_vertex = Vertex(self._get_grid().goal.position)

        self._graph = gen_forest(self._services, start_vertex, goal_vertex, [])
        self._init_displays()
Пример #5
0
 def __init__(self,
              services: Services,
              testing: BasicTesting = None) -> None:
     super().__init__(services, testing)
     self._V_size = 200
     self._max_radius = 15
     V: List[Vertex] = list()
     for i in range(self._V_size):
         q_rand: Point = self._get_random_sample()
         V.append(Vertex(q_rand, store_connectivity=True))
     self._graph = CyclicGraph(
         Vertex(self._get_grid().agent.position, store_connectivity=True),
         Vertex(self._get_grid().goal.position, store_connectivity=True), V)
Пример #6
0
    def _extract_path(self, q_new):
        goal_v: Vertex = Vertex(self._get_grid().goal.position)
        self._graph.add_edge(q_new, goal_v)
        # trace back
        path: List[Vertex] = [goal_v]

        while len(path[-1].parents) != 0:
            for parent in path[-1].parents:
                path.append(parent)
                break

        del path[-1]
        path.reverse()

        for p in path:
            self.move_agent(p.position)
            self.key_frame(ignore_key_frame_skip=True)
Пример #7
0
    def _extract_path(self, q_new):

        goal_v: Vertex = Vertex(self._get_grid().goal.position)
        self._graph.add_edge(q_new, goal_v)    #connect the last sampled point that's close to goal vertex and connet point to goal vertex with edge
        path: List[Vertex] = [goal_v]    

        while len(path[-1].parents) != 0:
            for parent in path[-1].parents:
                path.append(parent)
                break

        del path[-1]
        path.reverse()

        #get animation of path tracing from start to goal
        for p in path:
            self.move_agent(p.position)   
            self.key_frame(ignore_key_frame_skip=True)
Пример #8
0
    def _extract_path(self, q_new):

        goal_v: Vertex = Vertex(self._get_grid().goal.position)
        child_parent_dist = torch.norm(q_new.position.to_tensor() -
                                       goal_v.position.to_tensor())
        goal_v.cost = q_new.cost + child_parent_dist
        self._graph.add_edge(q_new, goal_v)
        path: List[Vertex] = [goal_v]

        while len(path[-1].parents) != 0:
            for parent in path[-1].parents:
                path.append(parent)
                break

        del path[-1]
        path.reverse()

        for p in path:
            self.move_agent(p.position)
            self.key_frame(ignore_key_frame_skip=True)
Пример #9
0
    def _extract_path(self, q_new):

        goal_v: Vertex = Vertex(self._get_grid().goal.position)
        child_parent_dist = torch.norm(q_new.position.to_tensor() -
                                       goal_v.position.to_tensor())
        goal_v.cost = q_new.cost + child_parent_dist
        self._graph.add_edge(q_new, goal_v)
        path: List[Vertex] = [goal_v]

        while len(path[-1].parents) != 0:
            for parent in path[-1].parents:
                path.append(parent)
                break

        del path[-1]
        path.reverse()

        for p in path:
            self.move_agent(p.position)
            #sends waypoint for ros extension
            grid: Map = self._get_grid()
            if isinstance(grid, RosMap):
                grid.publish_wp(grid.agent.position)
            self.key_frame(ignore_key_frame_skip=True)
Пример #10
0
 def remove_edge(self, parent: Vertex, child: Vertex):
     parent.remove_child(child)
     child.remove_parent(parent)
     self.size -= 1
Пример #11
0
 def add_edge(self, parent: Vertex, child: Vertex):
     if child is not parent:
         parent.add_child(child)
         child.add_parent(parent)
         self.size += 1
Пример #12
0
 def __init__(self, services: Services, testing: BasicTesting = None) -> None:
     super().__init__(services, testing)
     self._graph = Forest(Vertex(self._get_grid().agent.position), Vertex(self._get_grid().goal.position), [])
     self._max_dist = 10
     self._iterations = 10000