Пример #1
0
    def runPeak(self, grid, size, expected_location, expected_value):

        (width, height) = size

        problem = peak.PeakProblem(grid, (0, 0, width, height))

        peek_location = algorithms.algorithm1(problem)

        is_peak = problem.isPeak(peek_location)

        self.assertEqual(True, is_peak)
        self.assertEqual(expected_location, peek_location)
        self.assertEqual(expected_value, problem.get(peek_location))
Пример #2
0
 def test_Algorithm1(self):
     for testNumber in range(10000):
         testArray = generate.randomProblem(10, 10, 1000)
         testProblem = peak.createProblem(testArray)
         testPeak = algorithms.algorithm1(testProblem)
         self.assertTrue(testProblem.isPeak(testPeak))
fps_list = []

prev_frame = []
# Read until video is completed
while(cap.isOpened()):
  # Capture frame-by-frame
  ret, frame = cap.read()
  if ret == True:
    original_frame = np.copy(frame)

    # Add noise
    frame = saltAndPepperNoise(frame, 0.01)
    frame = gaussianNoise(frame, 400)

    # Apply 1st algorithm to noisy frame
    roi_mask, masked_frame = algorithm1(frame)

    # Display the resulting frame
    cv2.imshow('Original Video', original_frame)
    cv2.imshow('Noisy Video', frame)
    cv2.imshow('ROI Mask', roi_mask*255)
    cv2.imshow('ROI Video', masked_frame)

    # Keep previous frame
    prev_frame = frame

    # Calculate fps metric
    current_frame_time = time.time()
    seconds = current_frame_time - prev_frame_time
    prev_frame_time = current_frame_time
    fps = round(1/seconds, 2)
  # Capture frame-by-frame
  ret, frame = cap.read()
  if ret == True:
    original_frame = np.copy(frame)

    # Add noise
    frame = saltAndPepperNoise(frame, 0.01)
    frame = gaussianNoise(frame, 400)

    # Remove noise: first remove salt-and-pepper noise
    # and then remove gaussian noise
    clean_frame = cv2.medianBlur(frame, 5)
    clean_frame = blurring(frame)

    # Apply 1st algorithm to noisy frame
    roi_mask, masked_frame = algorithm1(clean_frame)

    # Display the resulting frame
    cv2.imshow('Original Video', original_frame)
    cv2.imshow('Noisy Video', frame)
    cv2.imshow('ROI Mask', roi_mask*255)
    cv2.imshow('ROI Video', masked_frame)

    # Keep previous frame
    prev_frame = frame

    # Calculate fps metric
    current_frame_time = time.time()
    seconds = current_frame_time - prev_frame_time
    prev_frame_time = current_frame_time
    fps = round(1/seconds, 2)