def setAlgorithms(self, algos): self.algos = {} wsum = sum([algo[1] for algo in algos]) for algo in algos: self.algos[algo[0]] = { "weight": algo[1] * 1.0 / wsum, "object": loadAlgorithm(algo[0]) }
def testAlgorithm(dataset, algorithm): print "[%s] Splitting learn & probe" % (algorithm) # (learn,probe) = dataset.splitInLearnAndProbe(lambda row:row[4]%80==0) # (learn,probe) = dataset.splitInLearnAndProbe(lambda row:row[1]!=33 ) learn_ids = ( 33, 80753, 65893, 51330, 41201, 24426, 23932, 16853, 6534, 2131, 43152, 43153, 43155, 43156, 43161, 43162, 43163, 43164, 43169, ) (learn, probe) = dataset.splitInLearnAndProbe(lambda row: row[1] not in learn_ids) # (learn,probe) = dataset.splitInLearnAndProbe(lambda row:row[1]!=32) a = loadAlgorithm(algorithm) learn._probe = probe print "[%s] Training dataset (%s rows of %s total)..." % ( algorithm, len(learn.data), len(learn.data) + len(probe.data), ) a.trainDataset(learn) print "[%s] Computing RMSE..." % (algorithm) # return (learn.rmse(a),probe.rmse(a)) return (0, probe.rmse(a))
def testAlgorithm(dataset, algorithm): print "[%s] Splitting learn & probe" % (algorithm) #(learn,probe) = dataset.splitInLearnAndProbe(lambda row:row[4]%80==0) #(learn,probe) = dataset.splitInLearnAndProbe(lambda row:row[1]!=33 ) learn_ids = (33, 80753, 65893, 51330, 41201, 24426, 23932, 16853, 6534, 2131, 43152, 43153, 43155, 43156, 43161, 43162, 43163, 43164, 43169) (learn, probe) = dataset.splitInLearnAndProbe(lambda row: row[1] not in learn_ids) #(learn,probe) = dataset.splitInLearnAndProbe(lambda row:row[1]!=32) a = loadAlgorithm(algorithm) learn._probe = probe print "[%s] Training dataset (%s rows of %s total)..." % ( algorithm, len(learn.data), len(learn.data) + len(probe.data)) a.trainDataset(learn) print "[%s] Computing RMSE..." % (algorithm) #return (learn.rmse(a),probe.rmse(a)) return (0, probe.rmse(a))
def setAlgorithms(self,algos): self.algos = {} wsum = sum([algo[1] for algo in algos]) for algo in algos: self.algos[algo[0]] = {"weight":algo[1]*1.0/wsum,"object":loadAlgorithm(algo[0])}