def group_lasso_example(): def selector(p, slice): return np.identity(p)[slice] penalties = [l2norm(selector(500, slice(i*100,(i+1)*100)), l=.1) for i in range(5)] penalties[0].l = 250. penalties[1].l = 225. penalties[2].l = 150. penalties[3].l = 100. group_lasso = seminorm(*penalties) X = np.random.standard_normal((1000,500)) Y = np.random.standard_normal((1000,)) regloss = squaredloss(X,Y) p=regloss.add_seminorm(group_lasso) solver=FISTA(p) solver.debug = True vals = solver.fit(max_its=2000, min_its=20,tol=1e-10) soln = solver.problem.coefs # solution pylab.figure(num=1) pylab.clf() pylab.plot(soln, c='g') # objective values pylab.figure(num=2) pylab.clf() pylab.plot(vals)
def group_lasso_example(): def selector(p, slice): return np.identity(p)[slice] penalties = [ l2norm(selector(500, slice(i * 100, (i + 1) * 100)), l=.1) for i in range(5) ] penalties[0].l = 250. penalties[1].l = 225. penalties[2].l = 150. penalties[3].l = 100. group_lasso = seminorm(*penalties) X = np.random.standard_normal((1000, 500)) Y = np.random.standard_normal((1000, )) regloss = squaredloss(X, Y) p = regloss.add_seminorm(group_lasso) solver = FISTA(p) solver.debug = True vals = solver.fit(max_its=2000, min_its=20, tol=1e-10) soln = solver.problem.coefs # solution pylab.figure(num=1) pylab.clf() pylab.plot(soln, c='g') # objective values pylab.figure(num=2) pylab.clf() pylab.plot(vals)
class conjugate(composite): def __init__(self, atom, quadratic=None, tol=1e-8): # we copy the atom because we will modify its quadratic part self.atom = copy(atom) if self.atom.quadratic is None: self.atom.set_quadratic(0, None, None, 0) if quadratic is not None: totalq = self.atom.quadratic + quadratic self.atom.set_quadratic(totalq.coef, totalq.offset, totalq.linear_term, totalq.constant_term) if self.atom.quadratic in [0, None]: raise ValueError('quadratic coefficient must be non-zero') self.solver = FISTA(self.atom) self.tol = tol #XXX we need a better way to pass around the Lipschitz constant # should go in the container class if hasattr(self.atom, "lipschitz"): self._backtrack = False # self._smooth_function_linear.lipschitz = atom.lipschitz + self.atom.quadratic.coef else: self._backtrack = True self._have_solved_once = False def smooth_objective(self, x, mode='both', check_feasibility=False): """ Evaluate the conjugate function and/or its gradient if mode == 'both', return both function value and gradient if mode == 'grad', return only the gradient if mode == 'func', return only the function value """ self.solver.debug = False self.atom.quadratic.linear_term -= x.T self.solver.fit(max_its=5000, tol=self.tol, backtrack=self._backtrack) minimizer = self.atom.coefs # retain a reference self.argmin = minimizer if mode == 'both': v = self.atom.objective(minimizer) return -v, minimizer elif mode == 'func': v = self.atom.objective(minimizer) return -v elif mode == 'grad': return minimizer else: raise ValueError("mode incorrectly specified") self.atom.quadratic.linear_term += x
def __init__(self, atom, quadratic=None, tol=1e-8): # we copy the atom because we will modify its quadratic part self.atom = copy(atom) if self.atom.quadratic is None: self.atom.set_quadratic(0, None, None, 0) if quadratic is not None: totalq = self.atom.quadratic + quadratic self.atom.set_quadratic(totalq.coef, totalq.offset, totalq.linear_term, totalq.constant_term) if self.atom.quadratic in [0, None]: raise ValueError('quadratic coefficient must be non-zero') self.solver = FISTA(self.atom) self.tol = tol #XXX we need a better way to pass around the Lipschitz constant # should go in the container class if hasattr(self.atom, "lipschitz"): self._backtrack = False # self._smooth_function_linear.lipschitz = atom.lipschitz + self.atom.quadratic.coef else: self._backtrack = True self._have_solved_once = False
def __init__(self, smooth_f, epsilon=0.01): self._smooth_function = smooth_f self._linear = linear(np.zeros(smooth_f.primal_shape)) self._quadratic = l2normsq(smooth_f.primal_shape, l=epsilon / 2.) self._smooth_function_linear = smooth_function(smooth_f, self._linear, self._quadratic) self._solver = FISTA(self._smooth_function_linear) #XXX we need a better way to pass around the Lipschitz constant # should go in the container class if hasattr(smooth_f, "L"): self._backtrack = False self._smooth_function_linear.L = smooth_f.L + epsilon else: self._backtrack = True self._have_solved_once = False self.epsilon = epsilon
class conjugate(object): def __init__(self, smooth_f, epsilon=0.01): self._smooth_function = smooth_f self._linear = linear(np.zeros(smooth_f.primal_shape)) self._quadratic = l2normsq(smooth_f.primal_shape, l=epsilon / 2.) self._smooth_function_linear = smooth_function(smooth_f, self._linear, self._quadratic) self._solver = FISTA(self._smooth_function_linear) #XXX we need a better way to pass around the Lipschitz constant # should go in the container class if hasattr(smooth_f, "L"): self._backtrack = False self._smooth_function_linear.L = smooth_f.L + epsilon else: self._backtrack = True self._have_solved_once = False self.epsilon = epsilon def smooth_eval(self, x, mode='both'): """ Evaluate the conjugate function and/or its gradient if mode == 'both', return both function value and gradient if mode == 'grad', return only the gradient if mode == 'func', return only the function value """ self._solver.debug = False self._linear.vector[:] = -x self._solver.fit(max_its=1000, tol=1.0e-08, backtrack=self._backtrack) minimizer = self._smooth_function_linear.coefs if mode == 'both': v = self._smooth_function_linear.smooth_eval(minimizer, mode='func') return -v, minimizer elif mode == 'func': v = self._smooth_function_linear.smooth_eval(minimizer, mode='func') return -v elif mode == 'grad': return minimizer else: raise ValueError("mode incorrectly specified")
class conjugate(object): def __init__(self, smooth_f, epsilon=0.01): self._smooth_function = smooth_f self._linear = linear(np.zeros(smooth_f.primal_shape)) self._quadratic = l2normsq(smooth_f.primal_shape, l=epsilon/2.) self._smooth_function_linear = smooth_function(smooth_f, self._linear, self._quadratic) self._solver = FISTA(self._smooth_function_linear) #XXX we need a better way to pass around the Lipschitz constant # should go in the container class if hasattr(smooth_f, "L"): self._backtrack = False self._smooth_function_linear.L = smooth_f.L + epsilon else: self._backtrack = True self._have_solved_once = False self.epsilon = epsilon def smooth_eval(self, x, mode='both'): """ Evaluate the conjugate function and/or its gradient if mode == 'both', return both function value and gradient if mode == 'grad', return only the gradient if mode == 'func', return only the function value """ self._solver.debug = False self._linear.vector[:] = -x self._solver.fit(max_its=1000, tol=1.0e-08, backtrack=self._backtrack) minimizer = self._smooth_function_linear.coefs if mode == 'both': v = self._smooth_function_linear.smooth_eval(minimizer, mode='func') return -v, minimizer elif mode == 'func': v = self._smooth_function_linear.smooth_eval(minimizer, mode='func') return -v elif mode == 'grad': return minimizer else: raise ValueError("mode incorrectly specified")
def test_group_lasso_sparse(n=100): def selector(p, slice): return np.identity(p)[slice] def selector_sparse(p, slice): return sparse.csr_matrix(np.identity(p)[slice]) X = np.random.standard_normal((1000, 500)) Y = np.random.standard_normal((1000, )) penalties = [ l2norm(selector(500, slice(i * 100, (i + 1) * 100)), l=.1) for i in range(5) ] penalties[0].l = 250. penalties[1].l = 225. penalties[2].l = 150. penalties[3].l = 100. group_lasso = seminorm(*penalties) regloss = squaredloss(X, Y) p = regloss.add_seminorm(group_lasso) solver = FISTA(p) solver.debug = True t1 = time.time() vals = solver.fit(max_its=2000, min_its=20, tol=1e-8) soln1 = solver.problem.coefs t2 = time.time() dt1 = t2 - t1 penalties = [ l2norm(selector_sparse(500, slice(i * 100, (i + 1) * 100)), l=.1) for i in range(5) ] penalties[0].l = 250. penalties[1].l = 225. penalties[2].l = 150. penalties[3].l = 100. group_lasso = seminorm(*penalties) regloss = squaredloss(X, Y) p = regloss.add_seminorm(group_lasso) solver = FISTA(p) solver.debug = True t1 = time.time() vals = solver.fit(max_its=2000, min_its=20, tol=1e-8) soln2 = solver.problem.coefs t2 = time.time() dt2 = t2 - t1 print "Times", dt1, dt2 print soln1[range(10)] print soln2[range(10)] np.testing.assert_almost_equal(soln1, soln2)
def lasso_example(compare=False): l1 = 20. sparsity = l1norm(500, l=l1 / 2.) X = np.random.standard_normal((1000, 500)) Y = np.random.standard_normal((1000, )) regloss = squaredloss(X, Y) sparsity2 = l1norm(500, l=l1 / 2.) #p=regloss.add_seminorm(sparsity) p = regloss.add_seminorm(seminorm(sparsity, sparsity2)) solver = FISTA(p) solver.debug = True vals = solver.fit(max_its=2000, min_its=100) soln = solver.problem.coefs if not compare: # solution pylab.figure(num=1) pylab.clf() pylab.plot(soln, c='g') # objective values pylab.figure(num=2) pylab.clf() pylab.plot(vals) else: p2 = lasso.gengrad((X, Y)) p2.assign_penalty(l1=l1) opt = FISTA(p2) opt.debug = True opt.fit(tol=1e-10, max_its=5000) beta = opt.problem.coefs print "Terminal error with seminorm:", np.min( vals), "\tTerminal error with lasso", p.obj( beta), "\nTerminal relative error:", ( np.min(vals) - p.obj(beta)) / p.obj(beta) pylab.figure(num=1) pylab.clf() #pylab.plot(soln, c='g') pylab.scatter(soln, beta) pylab.figure(num=2) pylab.clf() pylab.plot(vals)
def test_1d_fused_lasso(n=100): l1 = 1. sparsity1 = l1norm(n, l=l1) D = (np.identity(n) - np.diag(np.ones(n - 1), -1))[1:] extra = np.zeros(n) extra[0] = 1. D = np.vstack([D, extra]) D = sparse.csr_matrix(D) fused = seminorm(l1norm(D, l=l1)) X = np.random.standard_normal((2 * n, n)) Y = np.random.standard_normal((2 * n, )) regloss = squaredloss(X, Y) p = regloss.add_seminorm(fused) solver = FISTA(p) solver.debug = True vals1 = solver.fit(max_its=25000, tol=1e-12) soln1 = solver.problem.coefs B = np.array(sparse.tril(np.ones((n, n))).todense()) X2 = np.dot(X, B) time.sleep(3) D2 = np.diag(np.ones(n)) p2 = lasso.gengrad((X2, Y)) p2.assign_penalty(l1=l1) opt = FISTA(p2) opt.debug = True opt.fit(tol=1e-12, max_its=25000) beta = opt.problem.coefs soln2 = np.dot(B, beta) print soln1[range(10)] print soln2[range(10)] print p.obj(soln1), p.obj(soln2) #np.testing.assert_almost_equal(soln1,soln2) return vals1
def __init__(self, smooth_f, epsilon=0.01): self._smooth_function = smooth_f self._linear = linear(np.zeros(smooth_f.primal_shape)) self._quadratic = l2normsq(smooth_f.primal_shape, l=epsilon/2.) self._smooth_function_linear = smooth_function(smooth_f, self._linear, self._quadratic) self._solver = FISTA(self._smooth_function_linear) #XXX we need a better way to pass around the Lipschitz constant # should go in the container class if hasattr(smooth_f, "L"): self._backtrack = False self._smooth_function_linear.L = smooth_f.L + epsilon else: self._backtrack = True self._have_solved_once = False self.epsilon = epsilon
def test_lasso(n=100): l1 = 1. sparsity1 = l1norm(n, l=l1 * 0.75) sparsity2 = l1norm(n, l=l1 * 0.25) sparsity = l1norm(n, l=l1) X = np.random.standard_normal((5000, n)) Y = np.random.standard_normal((5000, )) regloss = squaredloss(X, Y) #p=regloss.add_seminorm(sparsity) #p=regloss.add_seminorm(seminorm(sparsity1,sparsity2),initial=np.zeros(n)) p = regloss.add_seminorm(seminorm(sparsity), initial=np.zeros(n)) solver = FISTA(p) solver.debug = True t1 = time.time() vals1 = solver.fit(max_its=800, tol=1e-18, set_prox_tol=True) t2 = time.time() dt1 = t2 - t1 soln = solver.problem.coefs time.sleep(5) p2 = lasso.gengrad((X, Y)) #,initial_coefs = np.random.normal(0,1,n)) p2.assign_penalty(l1=l1) opt = FISTA(p2) opt.debug = True t1 = time.time() vals2 = opt.fit(tol=1e-18, max_its=800) t2 = time.time() dt2 = t2 - t1 beta = opt.problem.coefs print soln[range(10)] print beta[range(10)] print p.obj(soln), p.obj(beta) print p2.obj(soln), p2.obj(beta) print "Times", dt1, dt2 return [vals1, vals2]
def test_group_lasso_sparse(n=100): def selector(p, slice): return np.identity(p)[slice] def selector_sparse(p, slice): return sparse.csr_matrix(np.identity(p)[slice]) X = np.random.standard_normal((1000,500)) Y = np.random.standard_normal((1000,)) penalties = [l2norm(selector(500, slice(i*100,(i+1)*100)), l=.1) for i in range(5)] penalties[0].l = 250. penalties[1].l = 225. penalties[2].l = 150. penalties[3].l = 100. group_lasso = seminorm(*penalties) regloss = squaredloss(X,Y) p=regloss.add_seminorm(group_lasso) solver=FISTA(p) solver.debug = True t1 = time.time() vals = solver.fit(max_its=2000, min_its=20,tol=1e-8) soln1 = solver.problem.coefs t2 = time.time() dt1 = t2 - t1 penalties = [l2norm(selector_sparse(500, slice(i*100,(i+1)*100)), l=.1) for i in range(5)] penalties[0].l = 250. penalties[1].l = 225. penalties[2].l = 150. penalties[3].l = 100. group_lasso = seminorm(*penalties) regloss = squaredloss(X,Y) p=regloss.add_seminorm(group_lasso) solver=FISTA(p) solver.debug = True t1 = time.time() vals = solver.fit(max_its=2000, min_its=20,tol=1e-8) soln2 = solver.problem.coefs t2 = time.time() dt2 = t2- t1 print "Times", dt1, dt2 print soln1[range(10)] print soln2[range(10)] np.testing.assert_almost_equal(soln1,soln2)
def test_1d_fused_lasso(n=100): l1 = 1. sparsity1 = l1norm(n, l=l1) D = (np.identity(n) - np.diag(np.ones(n-1),-1))[1:] extra = np.zeros(n) extra[0] = 1. D = np.vstack([D,extra]) D = sparse.csr_matrix(D) fused = seminorm(l1norm(D, l=l1)) X = np.random.standard_normal((2*n,n)) Y = np.random.standard_normal((2*n,)) regloss = squaredloss(X,Y) p=regloss.add_seminorm(fused) solver=FISTA(p) solver.debug = True vals1 = solver.fit(max_its=25000, tol=1e-12) soln1 = solver.problem.coefs B = np.array(sparse.tril(np.ones((n,n))).todense()) X2 = np.dot(X,B) time.sleep(3) D2 = np.diag(np.ones(n)) p2 = lasso.gengrad((X2, Y)) p2.assign_penalty(l1=l1) opt = FISTA(p2) opt.debug = True opt.fit(tol=1e-12,max_its=25000) beta = opt.problem.coefs soln2 = np.dot(B,beta) print soln1[range(10)] print soln2[range(10)] print p.obj(soln1), p.obj(soln2) #np.testing.assert_almost_equal(soln1,soln2) return vals1
def lasso_example(compare=False): l1 = 20. sparsity = l1norm(500, l=l1/2.) X = np.random.standard_normal((1000,500)) Y = np.random.standard_normal((1000,)) regloss = squaredloss(X,Y) sparsity2 = l1norm(500, l=l1/2.) #p=regloss.add_seminorm(sparsity) p=regloss.add_seminorm(seminorm(sparsity,sparsity2)) solver=FISTA(p) solver.debug = True vals = solver.fit(max_its=2000, min_its = 100) soln = solver.problem.coefs if not compare: # solution pylab.figure(num=1) pylab.clf() pylab.plot(soln, c='g') # objective values pylab.figure(num=2) pylab.clf() pylab.plot(vals) else: p2 = lasso.gengrad((X, Y)) p2.assign_penalty(l1=l1) opt = FISTA(p2) opt.debug = True opt.fit(tol=1e-10,max_its=5000) beta = opt.problem.coefs print "Terminal error with seminorm:", np.min(vals), "\tTerminal error with lasso", p.obj(beta) ,"\nTerminal relative error:", (np.min(vals) - p.obj(beta))/p.obj(beta) pylab.figure(num=1) pylab.clf() #pylab.plot(soln, c='g') pylab.scatter(soln,beta) pylab.figure(num=2) pylab.clf() pylab.plot(vals)
def test_lasso(n=100): l1 = 1. sparsity1 = l1norm(n, l=l1*0.75) sparsity2 = l1norm(n, l=l1*0.25) sparsity = l1norm(n, l=l1) X = np.random.standard_normal((5000,n)) Y = np.random.standard_normal((5000,)) regloss = squaredloss(X,Y) #p=regloss.add_seminorm(sparsity) #p=regloss.add_seminorm(seminorm(sparsity1,sparsity2),initial=np.zeros(n)) p=regloss.add_seminorm(seminorm(sparsity),initial=np.zeros(n)) solver=FISTA(p) solver.debug = True t1 = time.time() vals1 = solver.fit(max_its=800,tol=1e-18,set_prox_tol=True) t2 = time.time() dt1 = t2 - t1 soln = solver.problem.coefs time.sleep(5) p2 = lasso.gengrad((X, Y))#,initial_coefs = np.random.normal(0,1,n)) p2.assign_penalty(l1=l1) opt = FISTA(p2) opt.debug = True t1 = time.time() vals2 = opt.fit(tol=1e-18,max_its=800) t2 = time.time() dt2 = t2 - t1 beta = opt.problem.coefs print soln[range(10)] print beta[range(10)] print p.obj(soln), p.obj(beta) print p2.obj(soln), p2.obj(beta) print "Times", dt1, dt2 return [vals1, vals2]