Пример #1
0
def load_detect_faces_models():
    """
    Loads face detection models, do we don't have to reload them for every image
    """
    # LOAD MODELS
    pnet = PNet()
    rnet = RNet()
    onet = ONet()
    pnet.eval()
    rnet.eval()
    onet.eval()

    return pnet, rnet, onet
Пример #2
0
    def __init__(self,
                 device,
                 min_face_size=60.0,
                 thresholds=[0.7, 0.9, 0.98],
                 nms_thresholds=[0.7, 0.7, 0.7]):

        # LOAD MODELS
        self.device = device
        self.pnet = PNet().to(device)
        self.rnet = RNet().to(device)
        self.onet = ONet().to(device)
        self.onet.eval()

        self.min_face_size = min_face_size
        self.thresholds = thresholds
        self.nms_thresholds = nms_thresholds

        self.min_detection_size = 12
        self.factor = 0.707  # sqrt(0.5)
Пример #3
0
def detect_faces(image,
                 min_face_size=20.0,
                 thresholds=[0.6, 0.7, 0.8],
                 nms_thresholds=[0.7, 0.7, 0.7]):
    """
    Arguments:
        image: an instance of PIL.Image.
        min_face_size: a float number.
        thresholds: a list of length 3.
        nms_thresholds: a list of length 3.

    Returns:
        two float numpy arrays of shapes [n_boxes, 4] and [n_boxes, 10],
        bounding boxes and facial landmarks.
    """

    # LOAD MODELS
    pnet = PNet().to('cuda')
    rnet = RNet().to('cuda')
    onet = ONet().to('cuda')
    onet.eval()

    # BUILD AN IMAGE PYRAMID

    width, height = image.size
    min_length = min(height, width)

    min_detection_size = 12
    factor = 0.707  # sqrt(0.5)

    # scales for scaling the image
    scales = []

    # scales the image so that
    # minimum size that we can detect equals to
    # minimum face size that we want to detect
    m = min_detection_size / min_face_size
    min_length *= m

    factor_count = 0
    while min_length > min_detection_size:
        scales.append(m * factor**factor_count)
        min_length *= factor
        factor_count += 1

    # STAGE 1
    with torch.no_grad():
        # it will be returned
        bounding_boxes = []

        # run P-Net on different scales
        for s in scales:
            boxes = run_first_stage(image,
                                    pnet,
                                    scale=s,
                                    threshold=thresholds[0])
            bounding_boxes.append(boxes)

        # collect boxes (and offsets, and scores) from different scales
        bounding_boxes = [i for i in bounding_boxes if i is not None]
        bounding_boxes = np.vstack(bounding_boxes)

        keep = nms(bounding_boxes[:, 0:5], nms_thresholds[0])
        bounding_boxes = bounding_boxes[keep]

        # use offsets predicted by pnet to transform bounding boxes
        bounding_boxes = calibrate_box(bounding_boxes[:, 0:5],
                                       bounding_boxes[:, 5:])
        # shape [n_boxes, 5]

        bounding_boxes = convert_to_square(bounding_boxes)
        bounding_boxes[:, 0:4] = np.round(bounding_boxes[:, 0:4])

        # STAGE 2

        img_boxes = get_image_boxes(bounding_boxes, image, size=24)
        img_boxes = Variable(torch.FloatTensor(img_boxes),
                             volatile=True).to('cuda')
        output = rnet(img_boxes)
        offsets = output[0].cpu().data.numpy()  # shape [n_boxes, 4]
        probs = output[1].cpu().data.numpy()  # shape [n_boxes, 2]

        keep = np.where(probs[:, 1] > thresholds[1])[0]
        bounding_boxes = bounding_boxes[keep]
        bounding_boxes[:, 4] = probs[keep, 1].reshape((-1, ))
        offsets = offsets[keep]

        keep = nms(bounding_boxes, nms_thresholds[1])
        bounding_boxes = bounding_boxes[keep]
        bounding_boxes = calibrate_box(bounding_boxes, offsets[keep])
        bounding_boxes = convert_to_square(bounding_boxes)
        bounding_boxes[:, 0:4] = np.round(bounding_boxes[:, 0:4])

        # STAGE 3

        img_boxes = get_image_boxes(bounding_boxes, image, size=48)
        if len(img_boxes) == 0:
            return [], []
        img_boxes = Variable(torch.FloatTensor(img_boxes),
                             volatile=True).to('cuda')
        output = onet(img_boxes)
        landmarks = output[0].cpu().data.numpy()  # shape [n_boxes, 10]
        offsets = output[1].cpu().data.numpy()  # shape [n_boxes, 4]
        probs = output[2].cpu().data.numpy()  # shape [n_boxes, 2]

        keep = np.where(probs[:, 1] > thresholds[2])[0]
        bounding_boxes = bounding_boxes[keep]
        bounding_boxes[:, 4] = probs[keep, 1].reshape((-1, ))
        offsets = offsets[keep]
        landmarks = landmarks[keep]

        # compute landmark points
        width = bounding_boxes[:, 2] - bounding_boxes[:, 0] + 1.0
        height = bounding_boxes[:, 3] - bounding_boxes[:, 1] + 1.0
        xmin, ymin = bounding_boxes[:, 0], bounding_boxes[:, 1]
        landmarks[:, 0:5] = np.expand_dims(
            xmin, 1) + np.expand_dims(width, 1) * landmarks[:, 0:5]
        landmarks[:, 5:10] = np.expand_dims(
            ymin, 1) + np.expand_dims(height, 1) * landmarks[:, 5:10]

        bounding_boxes = calibrate_box(bounding_boxes, offsets)
        keep = nms(bounding_boxes, nms_thresholds[2], mode='min')
        bounding_boxes = bounding_boxes[keep]
        landmarks = landmarks[keep]

    return bounding_boxes, landmarks