self.hyperparameters['initial_exploration'], self.hyperparameters['final_exploration'], 0, self.hyperparameters["final_exploration_step"] - self.hyperparameters["replay_start_size"], name="epsilon", writer=writer, ), discount_factor=self.hyperparameters["discount_factor"], minibatch_size=self.hyperparameters["minibatch_size"], replay_start_size=self.hyperparameters["replay_start_size"], update_frequency=self.hyperparameters["update_frequency"], writer=writer ), lazy_frames=True, episodic_lives=True ) def test_agent(self): q_dist = QDist( copy.deepcopy(self.model), None, self.n_actions, self.hyperparameters['atoms'], v_min=self.hyperparameters['v_min'], v_max=self.hyperparameters['v_max'], ) return DeepmindAtariBody(C51TestAgent(q_dist, self.n_actions, self.hyperparameters["test_exploration"])) c51 = PresetBuilder('c51', default_hyperparameters, C51AtariPreset)
clip_grad=self.hyperparameters["clip_grad"], writer=writer) v = VNetwork(self.value_model, value_optimizer, loss_scaling=self.hyperparameters["value_loss_scaling"], clip_grad=self.hyperparameters["clip_grad"], writer=writer) policy = SoftmaxPolicy(self.policy_model, policy_optimizer, clip_grad=self.hyperparameters["clip_grad"], writer=writer) return VPG(features, v, policy, discount_factor=self.hyperparameters["discount_factor"], min_batch_size=self.hyperparameters["min_batch_size"]) def test_agent(self): features = FeatureNetwork(copy.deepcopy(self.feature_model)) policy = SoftmaxPolicy(copy.deepcopy(self.policy_model)) return VPGTestAgent(features, policy) def parallel_test_agent(self): return self.test_agent() vpg = PresetBuilder('vpg', default_hyperparameters, VPGClassicControlPreset)
self.hyperparameters['initial_exploration'], self.hyperparameters['final_exploration'], self.hyperparameters['replay_start_size'], self.hyperparameters['final_exploration_step'] - self.hyperparameters['replay_start_size'], name="exploration", writer=writer)) replay_buffer = ExperienceReplayBuffer( self.hyperparameters['replay_buffer_size'], device=self.device) return DQN( q, policy, replay_buffer, discount_factor=self.hyperparameters['discount_factor'], minibatch_size=self.hyperparameters['minibatch_size'], replay_start_size=self.hyperparameters['replay_start_size'], update_frequency=self.hyperparameters['update_frequency'], ) def test_agent(self): q = QNetwork(copy.deepcopy(self.model)) policy = GreedyPolicy(q, self.n_actions, epsilon=self.hyperparameters['test_exploration']) return DQNTestAgent(policy) dqn = PresetBuilder('dqn', default_hyperparameters, DQNClassicControlPreset)
writer=writer) replay_buffer = ExperienceReplayBuffer( self.hyperparameters["replay_buffer_size"], device=self.device) return TimeFeature( SAC(policy, q_1, q_2, v, replay_buffer, temperature_initial=self. hyperparameters["temperature_initial"], entropy_target=( -self.action_space.shape[0] * self.hyperparameters["entropy_target_scaling"]), lr_temperature=self.hyperparameters["lr_temperature"], replay_start_size=self.hyperparameters["replay_start_size"], discount_factor=self.hyperparameters["discount_factor"], update_frequency=self.hyperparameters["update_frequency"], minibatch_size=self.hyperparameters["minibatch_size"], writer=writer)) def test_agent(self): policy = SoftDeterministicPolicy(copy.deepcopy(self.policy_model), space=self.action_space) return TimeFeature(SACTestAgent(policy)) sac = PresetBuilder('sac', default_hyperparameters, SACContinuousPreset)
name="exploration", writer=writer)) replay_buffer = PrioritizedReplayBuffer( self.hyperparameters['replay_buffer_size'], alpha=self.hyperparameters['alpha'], beta=self.hyperparameters['beta'], device=self.device) return DeepmindAtariBody(DDQN( q, policy, replay_buffer, loss=weighted_smooth_l1_loss, discount_factor=self.hyperparameters["discount_factor"], minibatch_size=self.hyperparameters["minibatch_size"], replay_start_size=self.hyperparameters["replay_start_size"], update_frequency=self.hyperparameters["update_frequency"], ), lazy_frames=True) def test_agent(self): q = QNetwork(copy.deepcopy(self.model)) policy = GreedyPolicy(q, self.n_actions, epsilon=self.hyperparameters['test_exploration']) return DeepmindAtariBody(DDQNTestAgent(policy)) ddqn = PresetBuilder('ddqn', default_hyperparameters, DDQNAtariPreset)
target=PolyakTarget(self.hyperparameters["polyak_rate"]), scheduler=CosineAnnealingLR(policy_optimizer, n_updates), writer=writer) replay_buffer = ExperienceReplayBuffer( self.hyperparameters["replay_buffer_size"], device=self.device) return TimeFeature( DDPG( q, policy, replay_buffer, self.action_space, noise=self.hyperparameters["noise"], replay_start_size=self.hyperparameters["replay_start_size"], discount_factor=self.hyperparameters["discount_factor"], update_frequency=self.hyperparameters["update_frequency"], minibatch_size=self.hyperparameters["minibatch_size"], )) def test_agent(self): policy = DeterministicPolicy( copy.deepcopy(self.policy_model), None, self.action_space, ) return TimeFeature(DDPGTestAgent(policy)) ddpg = PresetBuilder('ddpg', default_hyperparameters, DDPGContinuousPreset)
) v = VNetwork( self.value_model, value_optimizer, scheduler=CosineAnnealingLR(value_optimizer, n_updates), loss_scaling=self.hyperparameters["value_loss_scaling"], clip_grad=self.hyperparameters["clip_grad"], writer=writer ) policy = SoftmaxPolicy( self.policy_model, policy_optimizer, scheduler=CosineAnnealingLR(policy_optimizer, n_updates), clip_grad=self.hyperparameters["clip_grad"], writer=writer ) return DeepmindAtariBody( VPG(features, v, policy, discount_factor=self.hyperparameters["discount_factor"], min_batch_size=self.hyperparameters["min_batch_size"]), ) def test_agent(self): features = FeatureNetwork(copy.deepcopy(self.feature_model)) policy = SoftmaxPolicy(copy.deepcopy(self.policy_model)) return DeepmindAtariBody(VPGTestAgent(features, policy)) vpg = PresetBuilder('vpg', default_hyperparameters, VPGAtariPreset)
q_dist, replay_buffer, exploration=LinearScheduler( self.hyperparameters['initial_exploration'], self.hyperparameters['final_exploration'], 0, train_steps - self.hyperparameters['replay_start_size'], name="exploration", writer=writer ), discount_factor=self.hyperparameters['discount_factor'] ** self.hyperparameters["n_steps"], minibatch_size=self.hyperparameters['minibatch_size'], replay_start_size=self.hyperparameters['replay_start_size'], update_frequency=self.hyperparameters['update_frequency'], writer=writer, ) def test_agent(self): q_dist = QDist( copy.deepcopy(self.model), None, self.n_actions, self.hyperparameters['atoms'], v_min=self.hyperparameters['v_min'], v_max=self.hyperparameters['v_max'], ) return RainbowTestAgent(q_dist, self.n_actions, self.hyperparameters["test_exploration"]) rainbow = PresetBuilder('rainbow', default_hyperparameters, RainbowClassicControlPreset)
self.hyperparameters['final_exploration'], 0, train_steps - self.hyperparameters['replay_start_size'], name="exploration", writer=writer), discount_factor=self.hyperparameters['discount_factor']** self.hyperparameters["n_steps"], minibatch_size=self.hyperparameters['minibatch_size'], replay_start_size=self.hyperparameters['replay_start_size'], update_frequency=self.hyperparameters['update_frequency'], writer=writer, ), lazy_frames=True, episodic_lives=True) def test_agent(self): q_dist = QDist( copy.deepcopy(self.model), None, self.n_actions, self.hyperparameters['atoms'], v_min=self.hyperparameters['v_min'], v_max=self.hyperparameters['v_max'], ) return DeepmindAtariBody( RainbowTestAgent(q_dist, self.n_actions, self.hyperparameters["test_exploration"])) rainbow = PresetBuilder('rainbow', default_hyperparameters, RainbowAtariPreset)
replay_buffer, exploration=LinearScheduler( self.hyperparameters['initial_exploration'], self.hyperparameters['final_exploration'], 0, self.hyperparameters["final_exploration_step"] - self.hyperparameters["replay_start_size"], name="epsilon", writer=writer, ), discount_factor=self.hyperparameters["discount_factor"], minibatch_size=self.hyperparameters["minibatch_size"], replay_start_size=self.hyperparameters["replay_start_size"], update_frequency=self.hyperparameters["update_frequency"], writer=writer) def test_agent(self): q_dist = QDist( copy.deepcopy(self.model), None, self.n_actions, self.hyperparameters['atoms'], v_min=self.hyperparameters['v_min'], v_max=self.hyperparameters['v_max'], ) return C51TestAgent(q_dist, self.n_actions, self.hyperparameters["test_exploration"]) c51 = PresetBuilder('c51', default_hyperparameters, C51ClassicControlPreset)