Пример #1
0
def add_noise(snd_array,fps):
    noise1 = noise.white(len(snd_array))
    noise1 = map(lambda x: int(x/.01), noise1)

    noise2 = np.array([noise1,noise1]).T
    noisy_array = noise2 + snd_array

    filename = "noisy_test.wav"

    scaled = np.int16(noisy_array/np.max(np.abs(noisy_array)) * 32767)
    write(filename, 44100, scaled)
    return
Пример #2
0
def many_psds(k=2, fs=1.0, b0=1.0, N=1024):
    """ compute average of many PSDs """
    psd = []
    for j in range(k):
        print(j)
        x = noise.white(num_points=2 * 4096, b0=b0, fs=fs)
        f, tmp = noise.numpy_psd(x, fs)
        if j == 0:
            psd = tmp
        else:
            psd = psd + tmp
    return f, psd / k
Пример #3
0
def many_psds(k=2,fs=1.0, b0=1.0, N=1024):
    """ compute average of many PSDs """
    psd=[]
    for j in range(k):
        print j
        x = noise.white(N=2*4096,b0=b0,fs=fs)
        f, tmp = noise.numpy_psd(x,fs)
        if j==0:
            psd = tmp
        else:
            psd = psd + tmp
    return f, psd/k
Пример #4
0
def add_noise(snd_array, fps):
    noise1 = noise.white(len(snd_array))
    noise1 = map(lambda x: int(x / .01), noise1)

    noise2 = np.array([noise1, noise1]).T
    noisy_array = noise2 + snd_array

    filename = "noisy_test.wav"

    scaled = np.int16(noisy_array / np.max(np.abs(noisy_array)) * 32767)
    write(filename, 44100, scaled)
    return
Пример #5
0
def test_noise():

    N = 500
    rate = 1.0
    w = noise.white(N)
    b = noise.brown(N)
    v = noise.violet(N)
    p = noise.pink(N)

    assert len(w) == N
    assert len(b) == N
    assert len(v) == N - 1  # why?
    assert len(p) == N
Пример #6
0
def test_noise():

    N = 500
    rate = 1.0
    w = noise.white(N)
    b = noise.brown(N)
    v = noise.violet(N)
    p = noise.pink(N)
    
    assert len(w) == N
    assert len(b) == N
    assert len(v) == N-1 # why?
    assert len(p) == N
Пример #7
0
def add_violet_noise(filename):
    print "Adding Violet Noise..."
    fps, snd_array = wavfile.read('../audio/transformed/' + filename)
    noise1 = noise.white(len(snd_array))
    noise1 = map(lambda x: int(x/.01), noise1)

    noise2 = np.array([noise1,noise1]).T
    noisy_array = noise2 + snd_array
    filename, file_extension = os.path.splitext(filename)
    filename = "../audio/transformed/"+filename+"violetnoise.wav"

    scaled = np.int16(noisy_array/np.max(np.abs(noisy_array)) * 32767)
    write(filename, 44100, scaled)
    return
Пример #8
0
def test_noise():

    N = 500
    #rate = 1.0
    w = noise.white(N)
    b = noise.brown(N)
    v = noise.violet(N)
    p = noise.pink(N)
    
    # check output length
    assert len(w) == N
    assert len(b) == N
    assert len(v) == N
    assert len(p) == N
    # check output type
    for x in [w, b, v, p]:
        assert type(x) == numpy.ndarray, "%s is not numpy.ndarray" % (type(x))
Пример #9
0
def test_ns():

    # this test asks for results at unreasonable tau-values
    # either zero, not an integer multiple of the data-interval
    # or too large, given the length of the dataset
    N = 500
    rate = 1.0
    phase_white = noise.white(N)
    taus_try = [x for x in numpy.logspace(0, 4, 4000)]  # try insane tau values
    _test(allan.adev, phase_white, rate, taus_try)
    _test(allan.oadev, phase_white, rate, taus_try)
    _test(allan.mdev, phase_white, rate, taus_try)
    _test(allan.tdev, phase_white, rate, taus_try)
    _test(allan.hdev, phase_white, rate, taus_try)
    _test(allan.ohdev, phase_white, rate, taus_try)
    _test(allan.totdev, phase_white, rate, taus_try)
    _test(allan.mtie, phase_white, rate, taus_try)
    _test(allan.tierms, phase_white, rate, taus_try)
Пример #10
0
def test_ns():
    
    # this test asks for results at unreasonable tau-values
    # either zero, not an integer multiple of the data-interval
    # or too large, given the length of the dataset
    N = 500
    rate = 1.0
    phase_white = noise.white(N)
    taus_try = [x for x in numpy.logspace(0,4,4000)] # try insane tau values
    _test( allan.adev, phase_white, rate, taus_try)
    _test( allan.oadev, phase_white, rate, taus_try)
    _test( allan.mdev, phase_white, rate, taus_try)
    _test( allan.tdev, phase_white, rate, taus_try)
    _test( allan.hdev, phase_white, rate, taus_try)
    _test( allan.ohdev, phase_white, rate, taus_try)
    _test( allan.totdev, phase_white, rate, taus_try)
    _test( allan.mtie, phase_white, rate, taus_try)
    _test( allan.tierms, phase_white, rate, taus_try)
Пример #11
0
# the predicted S_y, S_fi, S_x, and ADEV given in the table
# AW 2015-07-29

# from the ieee1139 table
# PSD_y(f)    = h2 * f^2                   fractional frequency PSD
# PSD_fi(f)   = h2 * v0^2 * f^0            phase (radians) PSD
# PSD_x(f)    = h2 * (2 pi )^-2            phase (time) PSD
# ADEV_y(tau) = sqrt{ 3*fh / (4*pi^2) * h2 * tau^-2 }  Allan deviation
# fh is the upper limit for the noise process, otherwise we would have infinite power...

fs=10e6
h2=1e-26
N=32*4096
v0 = 10e6 # nominal oscillator frequency

fi = noise.white(N=N,b0=h2*v0*v0,fs=fs)  # phase in radians
x = [fifi/(2*math.pi*v0) for fifi in fi] # phase in seconds
y = (fs)*np.diff(x)                      # fractional frequency
t = np.linspace(0, (1.0/fs)*N, len(y))

plt.figure()
plt.subplot(2,2,1)
plt.plot(t,[1e6*yy for yy in y],'b')
plt.xlabel('Time / s')
plt.ylabel('Fractional frequency / PPM')
plt.title('Fractional frequency time-series')

plt.subplot(2,2,2)
plt.plot(t,[1e9*tt for tt in x[1:]],'r')
plt.xlabel('Time / s')
plt.ylabel('Phase / ns')
Пример #12
0
def test_dataset_parameters():
    ds = Dataset()
    ds.set_input(noise.white(10),
                 rate=1.234,
                 data_type="frequency",
                 taus=[1, 3, 4])
Пример #13
0
def test_psd2allan_figure():
    f = np.arange(
        1e4 + 1
    )  # generate f-vector 0...10^4 Hz in 1 Hz steps -> Nyquist freq is 5 kHz
    S_y0 = 1e-24  # some arbitrarily chosen noise level
    S_y_WFM = S_y0 * np.ones(
        np.size(f))  # generate white frequency noise S_y(f)
    S_y_WPM = S_y_WFM * f**2  # white phase noise S_y(f)

    plt.rc('text', usetex=True)

    plt.close('all')
    plt.figure(1)
    plt.loglog(f[f > 0], S_y_WFM[f > 0])
    plt.loglog(f[f > 0], S_y_WPM[f > 0])

    y_WFM_ind = noise.white(num_points=int(2e4), b0=S_y0, fs=2e4)
    y_WPM_ind = noise.violet(num_points=int(2e4), b2=S_y0, fs=2e4)
    f, S_y_WFM_ind = welch(y_WFM_ind,
                           fs=2e4,
                           nperseg=y_WFM_ind.size,
                           window='hanning')
    f, S_y_WPM_ind = welch(y_WPM_ind,
                           fs=2e4,
                           nperseg=y_WPM_ind.size,
                           window='hanning')

    plt.loglog(f, S_y_WFM_ind)
    plt.loglog(f, S_y_WPM_ind)
    plt.xlabel('$f$ [Hz]')
    plt.ylabel('$S_y$')
    plt.legend(('WFM direct', 'WPM direct', 'WFM indirect', 'WPM indirect'))

    #(tau, sigma_WFM)= at.psd2allan(S_y_WFM, f, kind= 'a')
    #(tau, sigma_WPM)= at.psd2allan(S_y_WPM, f, kind= 'a')
    #(tau, modsigma_WFM)= at.psd2allan(S_y_WFM, f, kind= 'm')
    #(tau, modsigma_WPM)= at.psd2allan(S_y_WPM, f, kind= 'm')
    (tau, sigma_WFM) = at.psd2allan(S_y_WFM, kind='a')
    (tau, sigma_WPM) = at.psd2allan(S_y_WPM, kind='a')
    (tau, modsigma_WFM) = at.psd2allan(S_y_WFM, kind='m')
    (tau, modsigma_WPM) = at.psd2allan(S_y_WPM, kind='m')

    plt.figure(2)
    plt.loglog(tau, sigma_WFM)
    plt.loglog(tau, sigma_WPM)
    plt.loglog(tau, modsigma_WFM)
    plt.loglog(tau, modsigma_WPM)

    (tau, sigma_WFM_ind) = at.psd2allan(S_y_WFM_ind, kind='a')
    (tau, sigma_WPM_ind) = at.psd2allan(S_y_WPM_ind, kind='a')
    (tau, modsigma_WFM_ind) = at.psd2allan(S_y_WFM_ind, kind='m')
    (tau, modsigma_WPM_ind) = at.psd2allan(S_y_WPM_ind, kind='m')

    plt.loglog(tau, sigma_WFM_ind, ':C0')
    plt.loglog(tau, sigma_WPM_ind, ':C1')
    plt.loglog(tau, modsigma_WFM_ind, ':C2')
    plt.loglog(tau, modsigma_WPM_ind, ':C3')

    f_h = 1e4
    sigma_WFM_theo = np.sqrt(S_y0 / tau / 2.0)
    sigma_WPM_theo = np.sqrt(3.0 * f_h * S_y0 / tau**2 / (2.0 * np.pi)**2)
    modsigma_WFM_theo = np.sqrt(S_y0 / tau / 4.0)
    modsigma_WPM_theo = np.sqrt(3.0 * S_y0 / tau**3 / (2.0 * np.pi)**2 / 2)

    plt.loglog(tau, sigma_WFM_theo, '.C0')
    plt.loglog(tau, sigma_WPM_theo, '.C1')
    plt.loglog(tau, modsigma_WFM_theo, '.C2')
    plt.loglog(tau, modsigma_WPM_theo, '.C3')
    plt.xlabel(r'$\tau$ [s]')
    plt.ylabel(r'$\sigma_y$')
    plt.legend(
        ('psd2allan direct, ADEV, WFM', 'psd2allan direct, ADEV, WPM',
         'psd2allan direct, modADEV, WFM', 'psd2allan direct, modADEV, WPM',
         'psd2allan indirect, ADEV, WFM', 'psd2allan  indirect, ADEV, WPM',
         'psd2allan  indirect, modADEV, WFM',
         'psd2allan  indirect, modADEV, WPM', 'theoretical, ADEV, WFM',
         'theoretical, ADEV, WPM', 'theoretical, modADEV, WFM',
         'theoretical, modADEV, WPM'))
Пример #14
0
# AW 2015-07-29

# from the ieee1139 table
# PSD_y(f)    = h2 * f^2                   fractional frequency PSD
# PSD_fi(f)   = h2 * v0^2 * f^0            phase (radians) PSD
# PSD_x(f)    = h2 * (2 pi )^-2            phase (time) PSD
# ADEV_y(tau) = sqrt{ 3*fh / (4*pi^2) * h2 * tau^-2 }  Allan deviation
# fh is the upper limit for the noise process,
#     otherwise we would have infinite power...

fs = 10e6
h2 = 1e-26
N = 32 * 4096
v0 = 10e6  # nominal oscillator frequency

fi = noise.white(num_points=N, b0=h2 * v0 * v0, fs=fs)  # phase in radians
x = [fifi / (2 * math.pi * v0) for fifi in fi]  # phase in seconds
y = (fs) * np.diff(x)  # fractional frequency
t = np.linspace(0, (1.0 / fs) * N, len(y))

plt.figure()
plt.subplot(2, 2, 1)
plt.plot(t, [1e6 * yy for yy in y], 'b')
plt.xlabel('Time / s')
plt.ylabel('Fractional frequency / PPM')
plt.title('Fractional frequency time-series')

plt.subplot(2, 2, 2)
plt.plot(t, [1e9 * tt for tt in x[1:]], 'r')
plt.xlabel('Time / s')
plt.ylabel('Phase / ns')
Пример #15
0
def dataset():
    return Dataset(noise.white(10))
Пример #16
0
    psd = []
    for j in range(k):
        print j
        x = noise.white(N=2 * 4096, b0=b0, fs=fs)
        f, tmp = noise.numpy_psd(x, fs)
        if j == 0:
            psd = tmp
        else:
            psd = psd + tmp
    return f, psd / k


fs = 256  # sample rate
b0 = 0.0002
N = 2 * 4096
x = noise.white(N=2 * 4096, b0=b0, fs=fs)
t = np.linspace(0, (1.0 / fs) * N, len(x))

plt.figure()
plt.plot(t, x)
plt.xlabel('Time / s')
plt.ylabel('Amplitude / V')
print x
f, psd = many_psds(k=50, fs=fs, b0=b0, N=N)

fxx, Pxx_den = noise.scipy_psd(x, fs)

plt.figure()
plt.semilogy(f, psd, label='numpy.fft()')
plt.semilogy(fxx, Pxx_den, label='scipy.signal.welch()')
plt.semilogy(f, [b0] * len(f), label='b_0 = %.3g' % b0)
Пример #17
0
    phase_rw_rw = numpy.cumsum(noise.brown(N))  # integrate to get  phase
    plotallan(plt, freq_rw, 1, t, 'm.')
    plotallan_phase(plt, phase_rw_rw, 1, t, 'mo',label='random walk frequency')
    plotline(plt, +0.5, t, 'm',label="f^(+1/2)")
    
    # pink frequency noise => constant ADEV
    print("Pink frequency noise - should have constant ADEV")
    freq_pink = noise.pink(N)
    phase_p = numpy.cumsum(noise.pink(N))  # integrate to get phase, color??
    plotallan_phase(plt, phase_p, 1, t, 'co',label="pink/flicker frequency noise")
    plotallan(plt, freq_pink, 1, t, 'c.')
    plotline(plt, 0, t, 'c',label="f^0")

    # white frequency modulation => 1/sqrt(tau) ADEV
    print("White frequency noise - should have 1/sqrt(tau) ADEV")
    freq_white = noise.white(N)
    phase_rw = noise.brown(N)  # integrate to get Brownian, or random walk phase
    plotallan(plt, freq_white, 1, t, 'b.')
    plotallan_phase(plt, phase_rw, 1, t, 'bo',label='random walk phase a.k.a. white frequency noise')
    plotline(plt, -0.5, t, 'b',label="f^(-1/2)")

    # pink phase noise => 1/tau ADEV and MDEV
    print("Pink phase noise - should tau^(-3/2) MDEV")
    phase_pink = noise.pink(N)
    plotallan_phase(plt, phase_pink, 1, t, 'ko',label="pink/flicker phase noise")
    plotline(plt, -1, t, 'k',label="f^(-1)")

    # white phase noise => 1/tau ADEV  and tau^(-3/2) MDEV
    print("White phase noise - should have 1/tau ADEV")
    phase_white = noise.white(N)
    plotallan_phase(plt, phase_white, 1, t, 'ro',label="white phase noise")
Пример #18
0
# the predicted S_y, S_fi, S_x, and ADEV given in the table
# AW 2015-07-29

# from the ieee1139 table
# PSD_y(f)    = h2 * f^2                   fractional frequency PSD
# PSD_fi(f)   = h2 * v0^2 * f^0            phase (radians) PSD
# PSD_x(f)    = h2 * (2 pi )^-2            phase (time) PSD
# ADEV_y(tau) = sqrt{ 3*fh / (4*pi^2) * h2 * tau^-2 }  Allan deviation
# fh is the upper limit for the noise process, otherwise we would have infinite power...

fs=10e6
h2=1e-26
N=32*4096
v0 = 10e6 # nominal oscillator frequency

fi = noise.white(num_points=N,b0=h2*v0*v0,fs=fs)  # phase in radians
x = [fifi/(2*math.pi*v0) for fifi in fi] # phase in seconds
y = (fs)*np.diff(x)                      # fractional frequency
t = np.linspace(0, (1.0/fs)*N, len(y))

plt.figure()
plt.subplot(2,2,1)
plt.plot(t,[1e6*yy for yy in y],'b')
plt.xlabel('Time / s')
plt.ylabel('Fractional frequency / PPM')
plt.title('Fractional frequency time-series')

plt.subplot(2,2,2)
plt.plot(t,[1e9*tt for tt in x[1:]],'r')
plt.xlabel('Time / s')
plt.ylabel('Phase / ns')
Пример #19
0
# the predicted S_y, S_fi, S_x, and ADEV given in the table
# AW 2015-07-29

# from the ieee1139 table
# PSD_y(f)    = h0 * f^0                   fractional frequency PSD
# PSD_fi(f)   = h0 * vo^2 * f^-2           phase (radians) PSD
# PSD_x(f)    = h0 * (2 pi f)^-2           phase (time) PSD
# ADEV_y(tau) = sqrt{ 1/2 * h0 * tau^-1 }  Allan deviation


fs=100
h0=2e-16
N=16*4096
v0 = 1e6 # nominal oscillator frequency

y = noise.white(N=N,b0=h0,fs=fs) # fractional frequency
x = allantools.frequency2phase(y,fs) # phase in seconds
fi = [2*math.pi*v0*xx for xx in x] # phase in radians
t = np.linspace(0, (1.0/fs)*N, len(y))

plt.figure()
plt.plot(t,y)
plt.xlabel('Time / s')
plt.ylabel('Fractional frequency')
f_y, psd_y = noise.numpy_psd(y,fs)
f_fi, psd_fi = noise.numpy_psd(fi,fs)
f_x, psd_x = noise.numpy_psd(x,fs)

fxx, Pxx_den = noise.scipy_psd(y, fs)
f_fi2, psd_fi2 = noise.scipy_psd(fi, fs)
f_x2, psd_x2 = noise.scipy_psd(x, fs)
Пример #20
0
    psd = []
    for j in range(k):
        print(j)
        x = noise.white(num_points=2 * 4096, b0=b0, fs=fs)
        f, tmp = noise.numpy_psd(x, fs)
        if j == 0:
            psd = tmp
        else:
            psd = psd + tmp
    return f, psd / k


fs = 256  # sample rate
b0 = 0.0002
N = 2 * 4096
x = noise.white(num_points=2 * 4096, b0=b0, fs=fs)
t = np.linspace(0, (1.0 / fs) * N, len(x))

plt.figure()
plt.plot(t, x)
plt.xlabel('Time / s')
plt.ylabel('Amplitude / V')
print(x)
f, psd = many_psds(k=50, fs=fs, b0=b0, N=N)

fxx, Pxx_den = noise.scipy_psd(x, fs)

plt.figure()
plt.semilogy(f, psd, label='numpy.fft()')
plt.semilogy(fxx, Pxx_den, label='scipy.signal.welch()')
plt.semilogy(f, [b0] * len(f), label='b_0 = %.3g' % b0)
Пример #21
0
    psd=[]
    for j in range(k):
        print j
        x = noise.white(N=2*4096,b0=b0,fs=fs)
        f, tmp = noise.numpy_psd(x,fs)
        if j==0:
            psd = tmp
        else:
            psd = psd + tmp
    return f, psd/k


fs=256 # sample rate
b0=0.0002
N=2*4096
x = noise.white(N=2*4096,b0=b0,fs=fs)
t = np.linspace(0, (1.0/fs)*N, len(x))

plt.figure()
plt.plot(t,x)
plt.xlabel('Time / s')
plt.ylabel('Amplitude / V')
print x
f, psd = many_psds(k=50,fs=fs,b0=b0,N=N)

fxx, Pxx_den = noise.scipy_psd(x, fs)

plt.figure()
plt.semilogy(f,psd,label='numpy.fft()')
plt.semilogy(fxx,Pxx_den,label='scipy.signal.welch()')
plt.semilogy(f,[b0]*len(f),label='b_0 = %.3g' % b0 )
Пример #22
0
# the predicted S_y, S_fi, S_x, and ADEV given in the table
# AW 2015-07-29

# from the ieee1139 table
# PSD_y(f)    = h0 * f^0                   fractional frequency PSD
# PSD_fi(f)   = h0 * vo^2 * f^-2           phase (radians) PSD
# PSD_x(f)    = h0 * (2 pi f)^-2           phase (time) PSD
# ADEV_y(tau) = sqrt{ 1/2 * h0 * tau^-1 }  Allan deviation


fs = 100
h0 = 2e-16
N = 16 * 4096
v0 = 1e6  # nominal oscillator frequency

y = noise.white(num_points=N, b0=h0, fs=fs)  # fractional frequency
x = allantools.frequency2phase(y, fs)  # phase in seconds
fi = [2 * math.pi * v0 * xx for xx in x]  # phase in radians
t = np.linspace(0, (1.0 / fs) * N, len(y))

plt.figure()
plt.plot(t, y)
plt.xlabel("Time / s")
plt.ylabel("Fractional frequency")
f_y, psd_y = noise.numpy_psd(y, fs)
f_fi, psd_fi = noise.numpy_psd(fi, fs)
f_x, psd_x = noise.numpy_psd(x, fs)

fxx, Pxx_den = noise.scipy_psd(y, fs)
f_fi2, psd_fi2 = noise.scipy_psd(fi, fs)
f_x2, psd_x2 = noise.scipy_psd(x, fs)
Пример #23
0
    # pink frequency noise => constant ADEV
    print("Pink frequency noise - should have constant ADEV")
    freq_pink = noise.pink(N)
    phase_p = numpy.cumsum(noise.pink(N))  # integrate to get phase, color??
    plotallan_phase(plt,
                    phase_p,
                    1,
                    t,
                    'co',
                    label="pink/flicker frequency noise")
    plotallan(plt, freq_pink, 1, t, 'c.')
    plotline(plt, 0, t, 'c', label="f^0")

    # white frequency modulation => 1/sqrt(tau) ADEV
    print("White frequency noise - should have 1/sqrt(tau) ADEV")
    freq_white = noise.white(N)
    phase_rw = noise.brown(
        N)  # integrate to get Brownian, or random walk phase
    plotallan(plt, freq_white, 1, t, 'b.')
    plotallan_phase(plt,
                    phase_rw,
                    1,
                    t,
                    'bo',
                    label='random walk phase a.k.a. white frequency noise')
    plotline(plt, -0.5, t, 'b', label="f^(-1/2)")

    # pink phase noise => 1/tau ADEV and MDEV
    print("Pink phase noise - should tau^(-3/2) MDEV")
    phase_pink = noise.pink(N)
    plotallan_phase(plt,
Пример #24
0
def test_dataset_parameters():
    ds = Dataset()
    ds.set_input( noise.white(10), rate=1.234, data_type = "frequency", taus = [1,3,4] )
Пример #25
0
def dataset():
    return Dataset(noise.white(10))
Пример #26
0
# produces synthetic dataset with given PSD and compares against
# the predicted S_y, S_fi, S_x, and ADEV given in the table
# AW 2015-07-29

# from the ieee1139 table
# PSD_y(f)    = h0 * f^0                   fractional frequency PSD
# PSD_fi(f)   = h0 * vo^2 * f^-2           phase (radians) PSD
# PSD_x(f)    = h0 * (2 pi f)^-2           phase (time) PSD
# ADEV_y(tau) = sqrt{ 1/2 * h0 * tau^-1 }  Allan deviation

fs = 100
h0 = 2e-16
N = 16 * 4096
v0 = 1e6  # nominal oscillator frequency

y = noise.white(num_points=N, b0=h0, fs=fs)  # fractional frequency
x = allantools.frequency2phase(y, fs)  # phase in seconds
fi = [2 * math.pi * v0 * xx for xx in x]  # phase in radians
t = np.linspace(0, (1.0 / fs) * N, len(y))

plt.figure()
plt.plot(t, y)
plt.xlabel('Time / s')
plt.ylabel('Fractional frequency')
f_y, psd_y = noise.numpy_psd(y, fs)
f_fi, psd_fi = noise.numpy_psd(fi, fs)
f_x, psd_x = noise.numpy_psd(x, fs)

fxx, Pxx_den = noise.scipy_psd(y, fs)
f_fi2, psd_fi2 = noise.scipy_psd(fi, fs)
f_x2, psd_x2 = noise.scipy_psd(x, fs)