Пример #1
0
def patterson_fst(aca, acb):
    """Estimator of differentiation between populations A and B based on the
    F2 parameter.

    Parameters
    ----------
    aca : array_like, int, shape (n_variants, 2)
        Allele counts for population A.
    acb : array_like, int, shape (n_variants, 2)
        Allele counts for population B.

    Returns
    -------
    num : ndarray, shape (n_variants,), float
        Numerator.
    den : ndarray, shape (n_variants,), float
        Denominator.

    Notes
    -----
    See Patterson (2012), Appendix A.

    TODO check if this is  numerically equivalent to Hudson's estimator.

    """

    from allel.stats.admixture import patterson_f2, h_hat
    num = patterson_f2(aca, acb)
    den = num + h_hat(aca) + h_hat(acb)

    return num, den
Пример #2
0
def patterson_fst(aca, acb):
    """Estimator of differentiation between populations A and B based on the
    F2 parameter.

    Parameters
    ----------
    aca : array_like, int, shape (n_variants, 2)
        Allele counts for population A.
    acb : array_like, int, shape (n_variants, 2)
        Allele counts for population B.

    Returns
    -------
    num : ndarray, shape (n_variants,), float
        Numerator.
    den : ndarray, shape (n_variants,), float
        Denominator.

    Notes
    -----

    See Patterson (2012), Appendix A.

    TODO check if this is  numerically equivalent to Hudson's estimator.

    """

    from allel.stats.admixture import patterson_f2, h_hat
    num = patterson_f2(aca, acb)
    den = num + h_hat(aca) + h_hat(acb)

    return num, den