def test_no_constructor(self): params = Params({"type": "just_spaces"}) Tokenizer.from_params(params)
def from_params(cls, params): tokenizer = Tokenizer.from_params(params.pop("tokenizer")) ret = TokenCharactersIndexer.from_params(params) ret._character_tokenizer = tokenizer return ret
def train_model(db: FeverDocDB, params: Union[Params, Dict[str, Any]], cuda_device: int, serialization_dir: str) -> Model: """ This function can be used as an entry point to running models in AllenNLP directly from a JSON specification using a :class:`Driver`. Note that if you care about reproducibility, you should avoid running code using Pytorch or numpy which affect the reproducibility of your experiment before you import and use this function, these libraries rely on random seeds which can be set in this function via a JSON specification file. Note that this function performs training and will also evaluate the trained model on development and test sets if provided in the parameter json. Parameters ---------- params: Params, required. A parameter object specifying an AllenNLP Experiment. serialization_dir: str, required The directory in which to save results and logs. """ prepare_environment(params) os.makedirs(serialization_dir, exist_ok=True) sys.stdout = TeeLogger(os.path.join(serialization_dir, "stdout.log"), sys.stdout) # type: ignore sys.stderr = TeeLogger(os.path.join(serialization_dir, "stderr.log"), sys.stderr) # type: ignore handler = logging.FileHandler( os.path.join(serialization_dir, "python_logging.log")) handler.setLevel(logging.INFO) handler.setFormatter( logging.Formatter( '%(asctime)s - %(levelname)s - %(name)s - %(message)s')) logging.getLogger().addHandler(handler) serialization_params = deepcopy(params).as_dict(quiet=True) with open(os.path.join(serialization_dir, "model_params.json"), "w") as param_file: json.dump(serialization_params, param_file, indent=4) # Now we begin assembling the required parts for the Trainer. ds_params = params.pop('dataset_reader', {}) dataset_reader = FEVERSentenceReader( db, wiki_tokenizer=Tokenizer.from_params( ds_params.pop('wiki_tokenizer', {})), claim_tokenizer=Tokenizer.from_params( ds_params.pop('claim_tokenizer', {})), token_indexers=TokenIndexer.dict_from_params( ds_params.pop('token_indexers', {}))) train_data_path = params.pop('train_data_path') logger.info("Reading training data from %s", train_data_path) train_data = dataset_reader.read(train_data_path) all_datasets: List[Dataset] = [train_data] datasets_in_vocab = ["train"] validation_data_path = params.pop('validation_data_path', None) if validation_data_path is not None: logger.info("Reading validation data from %s", validation_data_path) validation_data = dataset_reader.read(validation_data_path) all_datasets.append(validation_data) datasets_in_vocab.append("validation") else: validation_data = None logger.info("Creating a vocabulary using %s data.", ", ".join(datasets_in_vocab)) vocab = Vocabulary.from_params( params.pop("vocabulary", {}), Dataset([ instance for dataset in all_datasets for instance in dataset.instances ])) vocab.save_to_files(os.path.join(serialization_dir, "vocabulary")) model = Model.from_params(vocab, params.pop('model')) iterator = DataIterator.from_params(params.pop("iterator")) train_data.index_instances(vocab) if validation_data: validation_data.index_instances(vocab) trainer_params = params.pop("trainer") if cuda_device is not None: args.trainer_params["cuda_device"] = cuda_device trainer = Trainer.from_params(model, serialization_dir, iterator, train_data, validation_data, trainer_params) trainer.train() # Now tar up results archive_model(serialization_dir) return model