def from_params( # type: ignore cls, vocab: Vocabulary, params: Params) -> "BiattentiveClassificationNetwork": embedder_params = params.pop("text_field_embedder") text_field_embedder = TextFieldEmbedder.from_params( vocab=vocab, params=embedder_params) embedding_dropout = params.pop("embedding_dropout") pre_encode_feedforward = FeedForward.from_params( params.pop("pre_encode_feedforward")) encoder = Seq2SeqEncoder.from_params(params.pop("encoder")) integrator = Seq2SeqEncoder.from_params(params.pop("integrator")) integrator_dropout = params.pop("integrator_dropout") output_layer_params = params.pop("output_layer") if "activations" in output_layer_params: output_layer = FeedForward.from_params(output_layer_params) else: output_layer = Maxout.from_params(output_layer_params) elmo = params.pop("elmo", None) if elmo is not None: elmo = Elmo.from_params(elmo) use_input_elmo = params.pop_bool("use_input_elmo", False) use_integrator_output_elmo = params.pop_bool( "use_integrator_output_elmo", False) initializer = InitializerApplicator.from_params( params.pop("initializer", [])) regularizer = RegularizerApplicator.from_params( params.pop("regularizer", [])) params.assert_empty(cls.__name__) return cls( vocab=vocab, text_field_embedder=text_field_embedder, embedding_dropout=embedding_dropout, pre_encode_feedforward=pre_encode_feedforward, encoder=encoder, integrator=integrator, integrator_dropout=integrator_dropout, output_layer=output_layer, elmo=elmo, use_input_elmo=use_input_elmo, use_integrator_output_elmo=use_integrator_output_elmo, initializer=initializer, regularizer=regularizer, )
def from_params(cls, vocab: Vocabulary, params: Params) -> 'BiattentiveClassificationNetwork': # type: ignore # pylint: disable=arguments-differ embedder_params = params.pop("text_field_embedder") text_field_embedder = TextFieldEmbedder.from_params(vocab=vocab, params=embedder_params) embedding_dropout = params.pop("embedding_dropout") pre_encode_feedforward = FeedForward.from_params(params.pop("pre_encode_feedforward")) encoder = Seq2SeqEncoder.from_params(params.pop("encoder")) integrator = Seq2SeqEncoder.from_params(params.pop("integrator")) integrator_dropout = params.pop("integrator_dropout") output_layer_params = params.pop("output_layer") if "activations" in output_layer_params: output_layer = FeedForward.from_params(output_layer_params) else: output_layer = Maxout.from_params(output_layer_params) elmo = params.pop("elmo", None) if elmo is not None: elmo = Elmo.from_params(elmo) use_input_elmo = params.pop_bool("use_input_elmo", False) use_integrator_output_elmo = params.pop_bool("use_integrator_output_elmo", False) initializer = InitializerApplicator.from_params(params.pop('initializer', [])) regularizer = RegularizerApplicator.from_params(params.pop('regularizer', [])) params.assert_empty(cls.__name__) return cls(vocab=vocab, text_field_embedder=text_field_embedder, embedding_dropout=embedding_dropout, pre_encode_feedforward=pre_encode_feedforward, encoder=encoder, integrator=integrator, integrator_dropout=integrator_dropout, output_layer=output_layer, elmo=elmo, use_input_elmo=use_input_elmo, use_integrator_output_elmo=use_integrator_output_elmo, initializer=initializer, regularizer=regularizer)
def from_params(cls, vocab , params ) : # type: ignore # pylint: disable=arguments-differ embedder_params = params.pop(u"text_field_embedder") text_field_embedder = TextFieldEmbedder.from_params(vocab=vocab, params=embedder_params) embedding_dropout = params.pop(u"embedding_dropout") pre_encode_feedforward = FeedForward.from_params(params.pop(u"pre_encode_feedforward")) encoder = Seq2SeqEncoder.from_params(params.pop(u"encoder")) integrator = Seq2SeqEncoder.from_params(params.pop(u"integrator")) integrator_dropout = params.pop(u"integrator_dropout") output_layer_params = params.pop(u"output_layer") if u"activations" in output_layer_params: output_layer = FeedForward.from_params(output_layer_params) else: output_layer = Maxout.from_params(output_layer_params) elmo = params.pop(u"elmo", None) if elmo is not None: elmo = Elmo.from_params(elmo) use_input_elmo = params.pop_bool(u"use_input_elmo", False) use_integrator_output_elmo = params.pop_bool(u"use_integrator_output_elmo", False) initializer = InitializerApplicator.from_params(params.pop(u'initializer', [])) regularizer = RegularizerApplicator.from_params(params.pop(u'regularizer', [])) params.assert_empty(cls.__name__) return cls(vocab=vocab, text_field_embedder=text_field_embedder, embedding_dropout=embedding_dropout, pre_encode_feedforward=pre_encode_feedforward, encoder=encoder, integrator=integrator, integrator_dropout=integrator_dropout, output_layer=output_layer, elmo=elmo, use_input_elmo=use_input_elmo, use_integrator_output_elmo=use_integrator_output_elmo, initializer=initializer, regularizer=regularizer)
def from_params(cls, params: Params): self._elmo = Elmo.from_params(params) return self