Пример #1
0
def model_props(cell_id):
    cell_metadata = {}
    # download existing model (if exists)
    bp = BiophysicalApi()
    try:
        model_list = bp.get_neuronal_models(cell_id)
        model_dict = {key: '' for key in template_model_dict.keys()}

        for model_type, template_id in template_model_dict.items():
            for model_meta in model_list:
                if model_meta['neuronal_model_template_id'] == template_id:
                    model_dict[model_type] = model_meta['id']

    except:
        logger.debug('No biophysical model available')

    api = allensdk.api.queries.rma_api.RmaApi()  # Get the model metadata

    for model_type, model_id in model_dict.items():
        if model_id != '':
            bp.cache_data(model_id, working_directory=model_dir[model_type])
            model_metadata = api.model_query(
                "NeuronalModelRun",
                criteria="[neuronal_model_id$eq%s]" % model_id)
            model_metadata_select = [
                model_metadata[0]['rheobase_feature_average'],
                model_metadata[0]['explained_variance_ratio']
            ]

            model_path = glob.glob('%s/*fit*.json' % model_dir[model_type])[0]
            for file_ in glob.glob('%s/*' % model_dir[model_type]):
                if file_ != model_path:
                    try:
                        os.remove(file_)
                    except:
                        shutil.rmtree(file_, ignore_errors=True)

            cell_metadata['model_path_{}'.format(
                model_type)] = os.path.abspath(model_path)
            cell_metadata['{}_id'.format(
                model_dir[model_type])] = str(model_id)
            for i, metadata_key in enumerate(opt_metric_dict[model_type]):
                cell_metadata[metadata_key] = model_metadata_select[i]
    return cell_metadata
Пример #2
0
        if os.path.isdir(s):
            shutil.copytree(s, d, symlinks, ignore)
        else:
            shutil.copy2(s, d)
            
#%% Pick a cell and a sweep to run from the available set of protocols
            
cell_id = 468193142  # get this from the web site: http://celltypes.brain-map.org
sweep_num = 46  # Select a Long Square sweep :  1s DC

#%% Download all-acive model

sdk_model_templates = {'all_active': 491455321, 'perisomatic': 329230710}
bp = BiophysicalApi()
bp.cache_stimulus = True
model_list = bp.get_neuronal_models(cell_id, model_type_ids=[sdk_model_templates['all_active']])  # Only get the all-active model for the cell
model_dict = model_list[0]

model_dir = 'all_active_models'
bp.cache_data(model_dict['id'], working_directory=model_dir)
new_model_file = 'fit_parameters_new.json'
shutil.copyfile(new_model_file, os.path.join(model_dir, new_model_file))
copytree('modfiles', os.path.join(model_dir, 'modfiles'))

#%% Running the legacy all-active models

os.chdir(model_dir)
subprocess.check_call(['nrnivmodl', 'modfiles/'])
manifest_file = 'manifest.json'
manifest_dict = json.load(open(manifest_file))