Пример #1
0
def label_unions_and_duplicates(rois, overlap_threshold):
    '''Detect unions and duplicates and label ROIs.'''
    masks = create_roi_mask_array(rois)
    valid_masks = np.ones(masks.shape[0]).astype(bool)
    ms = mask_set.MaskSet(masks=masks)

    # detect and label duplicates
    duplicates = ms.detect_duplicates(overlap_threshold)
    for duplicate in duplicates:
        index = duplicate[0]
        if "duplicate" not in rois[index].labels:
            rois[index].labels.append("duplicate")
        valid_masks[index] = False

    # detect and label unions only for remaining valid masks
    valid_idxs = np.where(valid_masks)
    ms = mask_set.MaskSet(masks=masks[valid_idxs].astype(bool))
    unions = ms.detect_unions()

    if unions:
        union_idxs = list(unions.keys())
        idxs = valid_idxs[0][union_idxs]
        for idx in idxs:
            if "union" not in rois[idx].labels:
                rois[idx].labels.append("union")
    return rois
Пример #2
0
def identify_valid_masks(mask_array):
    ms = mask_set.MaskSet(masks=mask_array.astype(bool))
    valid_masks = np.ones(mask_array.shape[0]).astype(bool)

    # detect duplicates
    duplicates = ms.detect_duplicates(overlap_threshold=0.9)
    if len(duplicates) > 0:
        valid_masks[duplicates.keys()] = False

    # detect unions, only for remaining valid masks
    valid_idxs = np.where(valid_masks)
    ms = mask_set.MaskSet(masks=mask_array[valid_idxs].astype(bool))
    unions = ms.detect_unions()

    if len(unions) > 0:
        un_idxs = unions.keys()
        valid_masks[valid_idxs[0][un_idxs]] = False

    return valid_masks
Пример #3
0
def label_unions_and_duplicates(roi_objs, masks=None, duplicate_threshold=0.9, 
    union_threshold=0.7, max_dist=10, set_size=2):
    """
    
    Modified from allensdk.internal.brain_observatory.roi_filter.py
    
    Returns ROI objects with unions and duplicates labelled.

    Required args:
        - roi_objs (ROI objects): ROI objects

    Optional args:
        - masks (3D array)           : ROI mask arrays. If None provided, they 
                                       are recreated from the ROI objects
                                       default: None
        - duplicate_threshold (float): threshold for identifying ROI duplicated
                                       (only the first of each set is labelled 
                                       a duplicate)
                                       default: 0.9
        - union_threshold (float)    : threshold for identifying ROIs that are 
                                       unions of several ROIs
                                       default: 0.7
        - set_size (int)             : number of ROIs forming sets to be checked
                                       for possibly being unions
                                       default: 2
        - max_dist (num)             : max distance between ROIs to be checked
                                       for possibly being unions
                                       default: 10

    Returns:
        - roi_objs (ROI objects): ROI objects labelled for union, duplicate,
                                  empty and border overlapping mask conditions

    """

    roi_objs = copy.deepcopy(roi_objs)

    if masks is None:
        masks = roi_masks.create_roi_mask_array(roi_objs)

    # get indices for non empty ROIs
    non_empty_mask = np.asarray([
        roi_obj.mask is not None for roi_obj in roi_objs]).astype(bool)
    non_empty_idx = np.where(non_empty_mask)[0]
    
    # label empty ROIs
    for idx in np.where(~non_empty_mask)[0]:
        roi_objs[idx].labels.append("empty")

    ms = mask_set.MaskSet(masks=masks[non_empty_idx])

    # detect and label duplicates
    duplicates = ms.detect_duplicates(duplicate_threshold)
    for duplicate in duplicates:
        orig_idx = non_empty_idx[duplicate[0]]
        if "duplicate" not in roi_objs[orig_idx].labels:
            roi_objs[orig_idx].labels.append("duplicate")

    # detect and label unions
    unions = ms.detect_unions(set_size, max_dist, union_threshold)

    if unions:
        union_idxs = list(unions.keys())
        for idx in union_idxs:
            orig_idx = non_empty_idx[idx]
            if "union" not in roi_objs[orig_idx].labels:
                roi_objs[orig_idx].labels.append("union")
    
    return roi_objs