Пример #1
0
    def _config(self, top_k, seed):
        model = rs.EigenFactorModel(**self.parameter_defaults(
            begin_min=-0.01,
            begin_max=0.01,
            dimension=10,
            seed=67439852,
        ))
        offline_learner = rs.OfflineEigenFactorModelALSLearner(
            **self.parameter_defaults(
                number_of_iterations=15,
                regularization_lambda=1e-3,
                alpha=40,
                implicit=1,
                clear_before_fit=1,
            ))
        offline_learner.set_model(model)

        online_learner = rs.PeriodicOfflineLearnerWrapper(
            **self.parameter_defaults(
                write_model=False,
                read_model=False,
                clear_model=False,
                learn=True,
                base_out_file_name="",
                base_in_file_name="",
            ))
        online_learner.set_model(model)
        online_learner.add_offline_learner(offline_learner)

        data_generator_parameters = self.parameter_defaults(
            timeframe_length=0, )
        if (data_generator_parameters['timeframe_length'] == 0):
            data_generator = rs.CompletePastDataGenerator()
        else:
            data_generator = rs.TimeframeDataGenerator(
                **data_generator_parameters)
        online_learner.set_data_generator(data_generator)
        period_computer = rs.PeriodComputer(**self.parameter_defaults(
            period_length=86400,
            start_time=-1,
            period_mode="time",
        ))
        online_learner.set_period_computer(period_computer)

        return (model, online_learner, [])
Пример #2
0
    def _config(self, top_k, seed):
        model = rs.ExternalModel(**self.parameter_defaults(mode="write", ))
        offline_learner = rs.OfflineExternalModelLearner(
            **self.parameter_defaults(
                out_name_base="batch",
                in_name_base="",
                mode="write",
            ))
        offline_learner.set_model(model)

        online_learner = rs.PeriodicOfflineLearnerWrapper(
            **self.parameter_defaults(
                write_model=False,
                read_model=False,
                clear_model=False,
                learn=True,
                base_out_file_name="",
                base_in_file_name="",
            ))
        online_learner.set_model(model)
        online_learner.add_offline_learner(offline_learner)

        data_generator_parameters = self.parameter_defaults(
            timeframe_length=0, )
        if (data_generator_parameters['timeframe_length'] == 0):
            data_generator = rs.CompletePastDataGenerator()
        else:
            data_generator = rs.TimeframeDataGenerator(
                **data_generator_parameters)
        online_learner.set_data_generator(data_generator)
        period_computer = rs.PeriodComputer(**self.parameter_defaults(
            period_length=86400,
            start_time=-1,
            period_mode="time",
        ))
        online_learner.set_period_computer(period_computer)

        return (model, online_learner, [])
    def _config(self, top_k, seed):

        model = rs.FactorModel(**self.parameter_defaults(
            begin_min=-0.01,
            begin_max=0.01,
            dimension=10,
            initialize_all=False,
        ))

        #
        # batch
        #

        # updater
        batch_updater = rs.FactorModelGradientUpdater(
            **self.parameter_defaults(learning_rate=self.parameter_default(
                'batch_learning_rate', 0.05),
                                      regularization_rate=0.0))
        batch_updater.set_model(model)

        # objective
        point_wise = rs.ObjectiveMSE()
        batch_gradient_computer = rs.GradientComputerPointWise()
        batch_gradient_computer.set_objective(point_wise)
        batch_gradient_computer.set_model(model)
        batch_gradient_computer.add_gradient_updater(batch_updater)

        # negative sample generator
        batch_negative_sample_generator = rs.UniformNegativeSampleGenerator(
            **self.parameter_defaults(
                negative_rate=self.parameter_default('batch_negative_rate',
                                                     70),
                initialize_all=False,
                seed=67439852,
                filter_repeats=False,
            ))
        batch_negative_sample_generator.add_updater(batch_gradient_computer)

        batch_offline_learner = rs.OfflineIteratingOnlineLearnerWrapper(
            **self.parameter_defaults(
                seed=254938879,
                number_of_iterations=3,
                shuffle=True,
            ))
        batch_offline_learner.add_iterate_updater(
            batch_negative_sample_generator)

        batch_online_learner = rs.PeriodicOfflineLearnerWrapper(
            **self.parameter_defaults(
                write_model=False,
                read_model=False,
                clear_model=False,
                learn=True,
                base_out_file_name="",
                base_in_file_name="",
            ))
        batch_online_learner.set_model(model)
        batch_online_learner.add_offline_learner(batch_offline_learner)

        batch_data_generator_parameters = self.parameter_defaults(
            timeframe_length=0, )
        if (batch_data_generator_parameters['timeframe_length'] == 0):
            print("Full experiment")
            batch_data_generator = rs.CompletePastDataGenerator()
        else:
            print("Timeframe experiment")
            batch_data_generator = rs.TimeframeDataGenerator(
                **batch_data_generator_parameters)
        batch_online_learner.set_data_generator(batch_data_generator)
        batch_period_computer = rs.PeriodComputer(**self.parameter_defaults(
            period_length=86400,
            start_time=-1,
            period_mode="time",
        ))
        batch_online_learner.set_period_computer(batch_period_computer)

        #
        # online
        #

        # updater
        online_updater = rs.FactorModelGradientUpdater(
            **self.parameter_defaults(learning_rate=self.parameter_default(
                'online_learning_rate', 0.2),
                                      regularization_rate=0.0))
        online_updater.set_model(model)

        # objective
        point_wise = rs.ObjectiveMSE()
        online_gradient_computer = rs.GradientComputerPointWise()
        online_gradient_computer.set_objective(point_wise)
        online_gradient_computer.set_model(model)
        online_gradient_computer.add_gradient_updater(online_updater)

        # negative sample generator
        online_negative_sample_generator = rs.UniformNegativeSampleGenerator(
            **self.parameter_defaults(
                negative_rate=self.parameter_default('online_negative_rate',
                                                     100),
                initialize_all=False,
                seed=67439852,
                filter_repeats=False,
            ))
        online_negative_sample_generator.add_updater(online_gradient_computer)

        learner = [batch_online_learner, online_negative_sample_generator]

        return (model, learner, [])
Пример #4
0
    def _config(self, top_k, seed):
        model = rs.FactorModel(**self.parameter_defaults(
            begin_min=-0.01,
            begin_max=0.01,
            dimension=10,
            initialize_all=False,
        ))

        updater = rs.FactorModelGradientUpdater(**self.parameter_defaults(
            learning_rate=0.05, regularization_rate=0.0))
        updater.set_model(model)

        point_wise = rs.ObjectiveMSE()
        gradient_computer = rs.GradientComputerPointWise()
        gradient_computer.set_objective(point_wise)
        gradient_computer.set_model(model)
        gradient_computer.add_gradient_updater(updater)

        negative_sample_generator = rs.UniformNegativeSampleGenerator(
            **self.parameter_defaults(
                negative_rate=0,
                initialize_all=False,
                seed=67439852,
                filter_repeats=False,
            ))
        negative_sample_generator.add_updater(gradient_computer)

        offline_learner = rs.OfflineIteratingOnlineLearnerWrapper(
            **self.parameter_defaults(
                seed=254938879,
                number_of_iterations=3,
                shuffle=True,
            ))
        offline_learner.add_iterate_updater(negative_sample_generator)

        online_learner = rs.PeriodicOfflineLearnerWrapper(
            **self.parameter_defaults(
                write_model=False,
                read_model=False,
                clear_model=False,
                learn=True,
                base_out_file_name="",
                base_in_file_name="",
            ))
        online_learner.set_model(model)
        online_learner.add_offline_learner(offline_learner)

        data_generator_parameters = self.parameter_defaults(
            timeframe_length=0, )
        if (data_generator_parameters['timeframe_length'] == 0):
            data_generator = rs.CompletePastDataGenerator()
        else:
            data_generator = rs.TimeframeDataGenerator(
                **data_generator_parameters)
        online_learner.set_data_generator(data_generator)
        period_computer = rs.PeriodComputer(**self.parameter_defaults(
            period_length=86400,
            start_time=-1,
            period_mode="time",
        ))
        online_learner.set_period_computer(period_computer)

        return (model, online_learner, [])