def make_amount_plot(infile):
    purchases = infra.pd.read_parquet(infile)
    purchases = purchases.assign(count=1)
    purchases = purchases[["amount_bytes", "count"
                           ]].groupby(["amount_bytes"]).sum().reset_index()
    purchases["amount_mb"] = purchases["amount_bytes"] / 1000**2

    alt.Chart(purchases).mark_point().encode(
        x=alt.X(
            "amount_mb",
            title="Session Purchase Amount (MB) (Log Scale)",
            scale=alt.Scale(type="log", domain=(10, 2000)),
        ),
        y=alt.Y(
            "count",
            title="Occurrences (Count) (Log Scale)",
            scale=alt.Scale(type="log", ),
        ),
        color=alt.condition(
            'datum.count>1000',
            alt.ColorValue('red'),
            alt.ColorValue('steelblue'),
        ),
        shape=alt.condition(
            'datum.count>1000',
            alt.ShapeValue('diamond'),
            alt.ShapeValue('triangle'),
        ),
    ).properties(
        width=500,
        height=300,
    ).save("renders/purchase_timing_per_user_clumped_amounts.png",
           scale_factor=2.0)

    print(purchases)
Пример #2
0
def available_parking():
    data = available_parking_data()
    person = (
        "m 0 0 l 14 -15 a 5 5 0 0 1 9 8 l -14 15 l 9 26 l -4 5 l -12 -22 l -12 12 l 1 5 l -2 3 l -12 -11 l 3 -2 l 5 0 l 9 -14 l -19 -11 l 4 -3 l 22 4"
    )

    bars = alt.Chart(data).transform_calculate(
        row="ceil(datum.id/5)").transform_calculate(
            col="datum.id - datum.row*5").mark_point(
                filled=True,
                size=30,
            ).encode(
                x=alt.X("col:O", axis=None),
                y=alt.Y("row:O", axis=None),
                shape=alt.ShapeValue(person),
                color=alt.condition(
                    alt.datum.occupied == 1,
                    alt.value('orange'),
                    alt.value('steelblue'),
                ),
            ).properties(width=700, height=700, title="Available Parking")

    text = bars.mark_text(
        align='center',
        baseline='middle',
        fontSize=25,
        dx=-3,
        dy=-16  # Nudges text to right so it doesn't appear on top of the bar
    ).encode(text='id:Q')

    return (bars + text).configure_title(
        fontSize=25,
        font='Calibri',  #This can be editted
        anchor='start',
        color='gray').configure_view(strokeWidth=0)
Пример #3
0
def labeling_buttons(title):
    colors = ('#33cc33', '#ace600', '#e6e600', '#ff9900', '#ff3300')
    data = pd.DataFrame([{'id': i, 'color': c} for i, c in enumerate(colors)])
    brush = alt.selection_single(nearest=True, empty='none', fields=['id'])

    return alt.Chart(data).mark_point(filled=True, size=100).encode(
        x=alt.X("id:O", axis=None),
        shape=alt.ShapeValue(PERSON),
        color=alt.condition(
            alt.datum.id <= brush.id, alt.Color('color:N', scale=None),
            alt.value('skyblue'))).properties(
                width=400, height=100, title=title).configure_view(
                    strokeWidth=0).add_selection(brush).configure_title(
                        fontSize=16)
def predictresults():
    h1 = House.query.order_by(House.id.desc()).first()

    # Creating feature array
    new_instance = np.array([[h1.livearea, h1.bdrms, h1.baths, h1.one_story,
                              h1.att_garage, h1.basement]])

    # Predicting new_instance target
    prediction = rf.predict(new_instance)

    # Principal Components
    lle_new_instance = lle_pipe.transform(new_instance)
    lle_new_data = pd.DataFrame(lle_new_instance, columns=['pca1', 'pca2'])

    # Returning text depending on the prediction
    pred = "not" if prediction[0] == 0 else ""

    # Creating a sweet altair chart
    lle_chart = alt.Chart(lle_data).mark_circle(opacity=.4).encode(
        alt.X("pca1", title="principal component 1"),
        alt.Y("pca2", title="principal component 2"),
        alt.Color("target:N", title='Built before 1980', scale=alt.Scale(range=["gray", "orange"]))
    )

    lle_chart = lle_chart + alt.Chart(lle_new_data).mark_point(
        opacity=1, color="#CA03FF", filled=True, size=150).encode(
        alt.X("pca1"),
        alt.Y("pca2"),
        alt.ShapeValue('cross')).properties(**props).interactive()

    # Saving chart to file -- probably will be building this inside the app though...
    lle_chart.save("b41980/static/lle_spec.json")

    # Creating dictionary to pass into the html
    posts = {
        "livearea": h1.livearea,
        "bdrms": h1.bdrms,
        "baths": h1.baths,
        "one_story": h1.one_story,
        "att_garage": h1.att_garage,
        "basement": h1.basement,
        "prediction": pred
    }

    return render_template("predictresults.html", title="Prediction Results",
                           posts=posts)
Пример #5
0
data = pd.DataFrame([dict(id=i) for i in range(1, 101)])

person = ("M1.7 -1.7h-0.8c0.3 -0.2 0.6 -0.5 0.6 -0.9c0 -0.6 "
          "-0.4 -1 -1 -1c-0.6 0 -1 0.4 -1 1c0 0.4 0.2 0.7 0.6 "
          "0.9h-0.8c-0.4 0 -0.7 0.3 -0.7 0.6v1.9c0 0.3 0.3 0.6 "
          "0.6 0.6h0.2c0 0 0 0.1 0 0.1v1.9c0 0.3 0.2 0.6 0.3 "
          "0.6h1.3c0.2 0 0.3 -0.3 0.3 -0.6v-1.8c0 0 0 -0.1 0 "
          "-0.1h0.2c0.3 0 0.6 -0.3 0.6 -0.6v-2c0.2 -0.3 -0.1 "
          "-0.6 -0.4 -0.6z")

alt.Chart(data).transform_calculate(
    row="ceil(datum.id/10)").transform_calculate(
        col="datum.id - datum.row*10").mark_point(filled=True, size=50).encode(
            x=alt.X("col:O", axis=None),
            y=alt.Y("row:O", axis=None),
            shape=alt.ShapeValue(person)).properties(
                width=400, height=400).configure_view(strokeWidth=0)

##
import altair as alt
from vega_datasets import data

source = data.stocks()

alt.Chart(source).mark_line(point=True).encode(x='date:T',
                                               y='price:Q',
                                               color='symbol:N')

##
import altair as alt
from vega_datasets import data
def _plot_isotype_array(baseline_ef,
                        exposed_ef,
                        population_size=100,
                        title="",
                        configure_chart=True,
                        icon_shape=PERSON_SHAPE,
                        icon_size=75,
                        stroke_color="black",
                        stroke_width=1.3,
                        cross_shape=CROSS_SHAPE,
                        cross_width=None,
                        chart_width=350,
                        chart_height=400):
    if isinstance(baseline_ef, float) or isinstance(exposed_ef, float):
        warnings.warn(
            "Can't currently plot (color) fractional icons. Rounding to nearest integer."
        )
    baseline_ef = round(baseline_ef)
    exposed_ef = round(exposed_ef)

    data = __generate_chart_source_data(baseline_ef, exposed_ef,
                                        population_size)

    root = round(math.sqrt(
        population_size))  # Create a square grid of total `population_size`

    # https://altair-viz.github.io/gallery/isotype_grid.html
    base_chart = alt.Chart(data).transform_calculate(
        row=f"ceil(datum.id/{root})",
        col=f"datum.id - datum.row*{root}",
    ).encode(
        x=alt.X("col:O", axis=None),
        y=alt.Y("row:O", axis=None),
    ).properties(width=chart_width,
                 height=chart_height,
                 title=title if title else "")
    icons = base_chart.mark_point(
        filled=True,
        stroke=stroke_color,
        strokeWidth=stroke_width,  # 2,
        size=icon_size,
    ).encode(
        color=alt.Color(
            'hue:N',
            scale=alt.Scale(
                domain=[
                    0, 1, 2
                ],  # Explicitly specify `hue` values or coloring will fail if <3 levels exist in data
                range=[
                    "#FFFFFF",  # Population (0)
                    "#4A5568",  # Baseline (1)
                    "#FA5765",  # Exposed (2)  "#4078EF"
                ]),
            # TODO: add uncertainty using shade: lighter color fill of icons in the 95% CI.
            legend=None),
        shape=alt.ShapeValue(icon_shape),
    )
    chart = icons
    if exposed_ef < baseline_ef:
        stroke_out = base_chart.mark_point(
            # shape="cross",
            filled=True,
            stroke="#4078EF",  # "black"
            # strokeWidth=cross_width,
            strokeWidth=math.sqrt(icon_size) /
            1.7 if cross_width is None else cross_width,
            strokeCap="round",
            size=icon_size,
        ).encode(shape=alt.ShapeValue(cross_shape),
                 opacity=alt.Opacity(
                     'reduced:N',
                     legend=None,
                     scale=alt.Scale(domain=[False, True], range=[0, 1]),
                 ))
        chart += stroke_out
    if configure_chart:  # Configured charts cannot be later concatenated.
        chart = chart.configure_title(
            align="left",
            anchor="start",
            offset=-10,
        ).configure_view(strokeWidth=0, )

    return chart