def call_run(run_fn): import numpy as np params = utils.Namespace.from_dict(utils.json_loads(sys.stdin.read())) def load_data(name, path, **ignored): if isinstance(path, str) and data_keys.match(name): return name, np.load(path, allow_pickle=True) return name, path print(params.dataset) ds = utils.Namespace.walk(params.dataset, load_data) config = params.config config.framework_params = utils.Namespace.dict(config.framework_params) try: result = run_fn(ds, config) res = dict(result) for name in ['predictions', 'truth', 'probabilities']: arr = result[name] if arr is not None: res[name] = os.path.join(config.result_dir, '.'.join([name, 'npy'])) np.save(res[name], arr, allow_pickle=True) except BaseException as e: log.exception(e) res = dict( error_message=str(e), models_count=0 ) utils.json_dump(res, config.result_file, style='compact')
def call_run(run_fn): import numpy as np params = utils.Namespace.from_dict(utils.json_loads(sys.stdin.read())) def load_data(name, path, **ignored): if isinstance(path, str) and data_keys.match(name): return name, np.load(path, allow_pickle=True) return name, path log.info("Params passed to subprocess:\n%s", params) ds = utils.Namespace.walk(params.dataset, load_data) config = params.config config.framework_params = utils.Namespace.dict(config.framework_params) try: with utils.InterruptTimeout(config.job_timeout_seconds, interruptions=[ dict(sig=TimeoutError), dict(sig=signal.SIGTERM), dict(sig=signal.SIGQUIT), dict(sig=signal.SIGKILL), dict(interrupt='process', sig=signal.SIGKILL) ], wait_retry_secs=10): result = run_fn(ds, config) res = dict(result) for name in ['predictions', 'truth', 'probabilities']: arr = result[name] if arr is not None: res[name] = os.path.join(config.result_dir, '.'.join([name, 'npy'])) np.save(res[name], arr, allow_pickle=True) except BaseException as e: log.exception(e) res = dict(error_message=str(e), models_count=0) finally: # ensure there's no subprocess left utils.kill_proc_tree(include_parent=False, timeout=5) utils.json_dump(res, config.result_file, style='compact')
def run(dataset: Dataset, config: TaskConfig): with TmpDir() as tmpdir: ds = ns( train=ns( X_enc=os.path.join(tmpdir, 'train.X_enc'), y=os.path.join(tmpdir, 'train.y') ), test=ns( X_enc=os.path.join(tmpdir, 'test.X_enc'), y=os.path.join(tmpdir, 'test.y') ) ) write_csv(dataset.train.X_enc, ds.train.X_enc), write_csv(dataset.train.y.reshape(-1, 1), ds.train.y), write_csv(dataset.test.X_enc, ds.test.X_enc), write_csv(dataset.test.y.reshape(-1, 1), ds.test.y), dataset.release() config.result_token = str(uuid.uuid1()) config.result_dir = tmpdir params = json_dumps(dict(dataset=ds, config=config), style='compact') output, err = run_cmd('{python} {here}/exec_proc.py'.format(python=PYTHON, here=dir_of(__file__)), _input_str_=params) out = io.StringIO(output) res = ns() for line in out: li = line.rstrip() if li == config.result_token: res = json_loads(out.readline(), as_namespace=True) break def load_data(path): return read_csv(path, as_data_frame=False, header=False) log.debug("Result from subprocess:\n%s", res) save_predictions_to_file(dataset=dataset, output_file=res.output_file, probabilities=load_data(res.probabilities) if res.probabilities is not None else None, predictions=load_data(res.predictions).squeeze(), truth=load_data(res.truth).squeeze(), target_is_encoded=res.target_is_encoded)
def run_in_venv(caller_file, script_file: str, *args, input_data: Union[dict, ns], dataset: Dataset, config: TaskConfig, process_results=None, python_exec=None): here = dir_of(caller_file) venv_bin_path = os.path.join(here, 'venv', 'bin') if python_exec is None: # use local virtual env by default python_exec = os.path.join(venv_bin_path, 'python -W ignore') script_path = os.path.join(here, script_file) cmd = f"{python_exec} {script_path}" input_data = ns.from_dict(input_data) with TmpDir() as tmpdir: def make_path(k, v, parents=None): if isinstance(v, np.ndarray): path = os.path.join(tmpdir, '.'.join(parents + [k, 'npy'])) if vector_keys.match(k): v = v.reshape(-1, 1) np.save(path, v, allow_pickle=True) return k, path return k, v ds = ns.walk(input_data, make_path) dataset.release() config.result_token = str(uuid.uuid1()) config.result_dir = tmpdir params = json_dumps(dict(dataset=ds, config=config), style='compact') with Timer() as proc_timer: output, err = run_cmd( cmd, *args, _input_str_=params, _live_output_=True, _error_level_=logging.DEBUG, _env_=dict(PATH=os.pathsep.join( [venv_bin_path, os.environ['PATH']]), PYTHONPATH=os.pathsep.join([ rconfig().root_dir, ]), AMLB_PATH=os.path.join(rconfig().root_dir, "amlb")), ) out = io.StringIO(output) res = ns() for line in out: li = line.rstrip() if li == config.result_token: res = json_loads(out.readline(), as_namespace=True) break if res.error_message is not None: raise NoResultError(res.error_message) for name in ['predictions', 'truth', 'probabilities']: res[name] = np.load( res[name], allow_pickle=True) if res[name] is not None else None log.debug("Result from subprocess:\n%s", res) if callable(process_results): res = process_results(res) if res.output_file: save_predictions_to_file( dataset=dataset, output_file=res.output_file, predictions=res.predictions.reshape(-1) if res.predictions is not None else None, truth=res.truth.reshape(-1) if res.truth is not None else None, probabilities=res.probabilities, probabilities_labels=res.probabilities_labels, target_is_encoded=res.target_is_encoded) return dict(models_count=res.models_count if res.models_count is not None else 1, training_duration=res.training_duration if res.training_duration is not None else proc_timer.duration, **res.others.__dict__)
rfc = estimator(n_jobs=config.cores, **config.framework_params) rfc.fit(X_train, y_train) predictions = rfc.predict(X_test) probabilities = rfc.predict_proba(X_test) if is_classification else None return ns(output_file=config.output_predictions_file, probabilities=probabilities, predictions=predictions, truth=y_test, target_is_encoded=False) if __name__ == '__main__': params = json_loads(sys.stdin.read(), as_namespace=True) def load_data(path): return read_csv(path, as_data_frame=False, header=False) ds = ns(train=ns(X_enc=load_data(params.dataset.train.X_enc), y=load_data(params.dataset.train.y).squeeze()), test=ns( X_enc=load_data(params.dataset.test.X_enc), y=load_data(params.dataset.test.y).squeeze(), )) config = params.config config.framework_params = ns.dict(config.framework_params) result = run(ds, config) res = copy.copy(result)