Пример #1
0
def test_model(sentence: str, model_dir: str) -> None:
    """Performs NER analysis on sentence

    (defaults to using base model which can be trained with train_base_model())

    Args:
        sentence (str): text file to perform analysis on
        model_dir (str): path to model to use for analysis

    """
    model = anago.Sequence.load(model_dir)
    tagger = Tagger(model.model, preprocessor=model.p)

    data = sentence.strip().split()
    pred = tagger.predict(data)
    tags = tagger._get_tags(pred)
    probs = tagger._get_prob(pred)
    res = tagger._build_response(data, tags, probs)

    print()
    print(list(zip(data, tags, probs)))
    print()

    if not res['entities']:
        print("No entities found.")
    else:
        print("Entities Found: ")

    for entity in res['entities']:
        print(f"\t{entity['text']} = {entity['type']}")
Пример #2
0
class ElmoBiLSTM_CRFProcessor(CustomProcessor):
    def __init__(self, process_proper_nouns=False):
        super().__init__(process_proper_nouns)
        model = load_model(os.path.join(ELMO_TAGGER_PATH, 'weights.h5'),
                           os.path.join(ELMO_TAGGER_PATH, 'params.json'))
        it = IndexTransformer.load(
            os.path.join(ELMO_TAGGER_PATH, 'preprocessor.pkl'))
        self.pos_tagger = Tagger(model,
                                 preprocessor=it,
                                 tokenizer=wordpunct_tokenize)

    def extract_phrase_by_type(self, token, type):
        return self._extract_phrase(
            list(
                zip(self.pos_tagger.tokenizer(token),
                    self.pos_tagger.predict(token))), type)
Пример #3
0
def run_model(text: str, model_dir: str=BASE_MODEL_PATH) -> List:
    """Performs NER analysis on sentence

    (defaults to using base model which can be trained with train_base_model())

    Args:
        text (str): text to perform analysis on
        model (str): path to model to use for analysis

    """
    model = anago.Sequence.load(model_dir)
    tagger = Tagger(model.model, preprocessor=model.p)

    data = text.strip().split()
    pred = tagger.predict(data)
    tags = tagger._get_tags(pred)
    probs = tagger._get_prob(pred)
    res = tagger._build_response(data, tags, probs)

    return res['entities']
Пример #4
0
class BiLstmCrfNER(NERModel):

    def __init__(self,
            word_embedding_dim=100,
            char_embedding_dim=25,
            word_lstm_size=100,
            char_lstm_size=25,
            fc_dim=100,
            dropout=0.5,
            embeddings=None,
            use_char=True,
            use_crf=True,
            batch_size=16, 
            learning_rate=0.001, 
            max_iter=10):
        """ Construct a BiLSTM-CRF NER model. Model is augmented with character
            level embeddings as well as word embeddings by default. Implementation 
            is provided by the Anago project.

            Parameters
            ----------
            word_embedding_dim : int, optional, default 100
                word embedding dimensions.
            char_embedding_dim : int, optional, default 25
                character embedding dimensions.
            word_lstm_size : int, optional, default 100
                character LSTM feature extractor output dimensions.
            char_lstm_size : int, optional, default 25
                word tagger LSTM output dimensions.
            fc_dim : int, optional, default 100
                output fully-connected layer size.
            dropout : float, optional, default 0.5
                dropout rate.
            embeddings : numpy array
                word embedding matrix.
            use_char : bool, optional, default True
                add char feature.
            use_crf : bool, optional, default True
                use crf as last layer.
            batch_size : int, optional, default 16
                training batch size.
            learning_rate : float, optional, default 0.001
                learning rate for Adam optimizer
            max_iter : int
                number of epochs of training

            Attributes
            ----------
            preprocessor_ : reference to preprocessor
            model_ : reference to generated model
            trainer_ : internal reference to Anago Trainer (model)
            tagger_ : internal reference to Anago Tagger (predictor)
        """
        super().__init__()
        self.word_embedding_dim = word_embedding_dim
        self.char_embedding_dim = char_embedding_dim
        self.word_lstm_size = word_lstm_size
        self.char_lstm_size = char_lstm_size
        self.fc_dim = fc_dim
        self.dropout = dropout
        self.embedding = None
        self.use_char = True
        self.use_crf = True
        self.batch_size = batch_size
        self.learning_rate = learning_rate
        self.max_iter = max_iter
        # populated by fit() and load(), expected by save() and transform()
        self.preprocessor_ = None
        self.model_ = None
        self.trainer_ = None
        self.tagger_ = None


    def fit(self, X, y):
        """ Trains the NER model. Input is list of list of tokens and tags.

            Parameters
            ----------
            X : list(list(str))
                list of list of tokens
            y : list(list(str))
                list of list of BIO tags

            Returns
            -------
            self
        """
        log.info("Preprocessing dataset...")
        self.preprocessor_ = IndexTransformer(use_char=self.use_char)
        self.preprocessor_.fit(X, y)

        log.info("Building model...")
        self.model_ = BiLSTMCRF(
            char_embedding_dim=self.char_embedding_dim,
            word_embedding_dim=self.word_embedding_dim,
            char_lstm_size=self.char_lstm_size,
            word_lstm_size=self.word_lstm_size,
            char_vocab_size=self.preprocessor_.char_vocab_size,
            word_vocab_size=self.preprocessor_.word_vocab_size,
            num_labels=self.preprocessor_.label_size,
            dropout=self.dropout,
            use_char=self.use_char,
            use_crf=self.use_crf)
        self.model_, loss = self.model_.build()
        optimizer = Adam(lr=self.learning_rate)
        self.model_.compile(loss=loss, optimizer=optimizer)
        self.model_.summary()

        log.info('Training the model...')
        self.trainer_ = Trainer(self.model_, preprocessor=self.preprocessor_)

        x_train, x_valid, y_train, y_valid = train_test_split(X, y, 
            test_size=0.1, random_state=42)
        self.trainer_.train(x_train, y_train, x_valid=x_valid, y_valid=y_valid,
            batch_size=self.batch_size, epochs=self.max_iter)

        self.tagger_ = Tagger(self.model_, preprocessor=self.preprocessor_)

        return self


    def predict(self, X):
        """ Predicts using the NER model.

            Parameters
            ----------
            X : list(list(str))
                list of list of tokens.

            Returns
            -------
            y : list(list(str))
                list of list of predicted BIO tags.
        """
        if self.tagger_ is None:
            raise ValueError("No tagger found, either run fit() to train or load() a trained model")

        log.info("Predicting from model...")
        ypreds = [self.tagger_.predict(" ".join(x)) for x in X]
        return ypreds


    def save(self, dirpath):
        """ Saves model to local disk, given a dirpath 
        
            Parameters
            ----------
            dirpath : str
                a directory where model artifacts will be saved.
                Model saves a weights.h5 weights file, a params.json parameter
                file, and a preprocessor.pkl preprocessor file.

            Returns
            -------
            None
        """
        if self.model_ is None or self.preprocessor_ is None:
            raise ValueError("No model artifacts to save, either run fit() to train or load() a trained model")

        if not os.path.exists(dirpath):
            os.makedirs(dirpath)

        weights_file = os.path.join(dirpath, "weights.h5")
        params_file = os.path.join(dirpath, "params.json")
        preprocessor_file = os.path.join(dirpath, "preprocessor.pkl")

        save_model(self.model_, weights_file, params_file)
        self.preprocessor_.save(preprocessor_file)

        write_param_file(self.get_params(), os.path.join(dirpath, "params.yaml"))


    def load(self, dirpath):
        """ Loads a trained model from local disk, given the dirpath

            Parameters
            ----------
            dirpath : str
                a directory where model artifacts are saved.

            Returns
            -------
            self
        """
        if not os.path.exists(dirpath):
            raise ValueError("Model directory not found: {:s}".format(dirpath))

        weights_file = os.path.join(dirpath, "weights.h5")
        params_file = os.path.join(dirpath, "params.json")
        preprocessor_file = os.path.join(dirpath, "preprocessor.pkl")

        if not (os.path.exists(weights_file) or 
                os.path.exists(params_file) or
                os.path.exists(preprocessor_file)):
            raise ValueError("Model files may be corrupted, exiting")
        
        self.model_ = load_model(weights_file, params_file)
        self.preprocessor_ = IndexTransformer.load(preprocessor_file)
        self.tagger_ = Tagger(self.model_, preprocessor=self.preprocessor_)

        return self
Пример #5
0
from CRF.anago.data import prepare_preprocessor

DATA_ROOT = 'data/phenebank/'
train_path = os.path.join(DATA_ROOT, 'train.txt')

x_train, y_train = load_data_and_labels(train_path)

p = prepare_preprocessor(x_train, y_train)
model_config = ModelConfig()
SAVE_ROOT = './models'  # trained model
weights = 'model_weights.h5'
tagger = anago.Tagger(model_config,
                      weights,
                      save_path=SAVE_ROOT,
                      preprocessor=p)

test_path = "data/phenebank/test.txt"

with open(test_path) as ifile:
    this_sentence = []
    all_sentences = []
    this_output = []
    all_outputs = []
    for line in ifile:
        line = line.strip()
        if len(line) == 0:
            this_output = tag.predict(tag, this_sentence)
            print this_sentence, this_output
        else:
            this_sentence.append(line.split("\t")[0])
Пример #6
0
class ElmoNER(NERModel):
    def __init__(self,
                 word_embedding_dim=100,
                 char_embedding_dim=25,
                 word_lstm_size=100,
                 char_lstm_size=25,
                 fc_dim=100,
                 dropout=0.5,
                 embeddings=None,
                 embeddings_file="glove.6B.100d.txt",
                 batch_size=16,
                 learning_rate=0.001,
                 max_iter=2):
        """ Construct a ELMo based NER model. Model is similar to the BiLSTM-CRF
            model except that the word embeddings are contextual, since they are
            returned by a trained ELMo model. ELMo model requires an additional 
            embedding, which is Glove-100 by default. ELMo model is provided by
            the (dev) Anago project.

            Parameters
            ----------
            word_embedding_dim : int, optional, default 100
                word embedding dimensions.
            char_embedding_dim : int, optional, default 25
                character embedding dimensions.
            word_lstm_size: int, optional, default 100
                character LSTM feature extractor output dimensions.
            char_lstm_size : int, optional, default 25
                word tagger LSTM output dimensions.
            fc_dim : int, optional, default 100
                output fully-connected layer size.
            dropout : float, optional, default 0.5
                dropout rate.
            embeddings : numpy array
                word embedding matrix.
            embeddings_file : str
                path to embedding file.
            batch_size : int, optional, default 16
                training batch size.
            learning_rate : float, optional, default 0.001
                learning rate for Adam optimizer.
            max_iter : int, optional, default 2
                number of epochs of training.

            Attributes
            ----------
            preprocessor_ : reference to Anago preprocessor.
            model_ : reference to the internal Anago ELModel
            trainer_ : reference to the internal Anago Trainer object.
            tagger_ : reference to the internal Anago Tagger object.
        """
        super().__init__()
        self.word_embedding_dim = word_embedding_dim
        self.char_embedding_dim = char_embedding_dim
        self.word_lstm_size = word_lstm_size
        self.char_lstm_size = char_lstm_size
        self.fc_dim = fc_dim
        self.dropout = dropout
        self.embeddings = embeddings
        self.embeddings_file = embeddings_file
        self.batch_size = batch_size
        self.learning_rate = learning_rate
        self.max_iter = max_iter
        # populated by fit() and load(), expected by save() and transform()
        self.preprocessor_ = None
        self.model_ = None
        self.trainer_ = None
        self.tagger_ = None

    def fit(self, X, y):
        """ Trains the NER model. Input is list of AnnotatedDocuments.

            Parameters
            ----------
            X : list(list(str))
                list of list of tokens
            y : list(list(str))
                list of list of BIO tags

            Returns
            -------
            self
        """
        if self.embeddings is None and self.embeddings_file is None:
            raise ValueError(
                "Either embeddings or embeddings_file should be provided, exiting."
            )

        log.info("Preprocessing dataset...")
        self.preprocessor_ = ELMoTransformer()
        self.preprocessor_.fit(X, y)

        if self.embeddings is None:
            self.embeddings = load_glove(self.embeddings_file)
            embeddings_dim != self.embeddings[list(
                self.embeddings.keys())[0]].shape[0]
            self.embeddings = filter_embeddings(
                self.embeddings, self.preprocessor_._word_vocab.vocab,
                embeddings_dim)

        log.info("Building model...")
        self.model_ = ELModel(
            char_embedding_dim=self.char_embedding_dim,
            word_embedding_dim=self.word_embedding_dim,
            char_lstm_size=self.char_lstm_size,
            word_lstm_size=self.word_lstm_size,
            char_vocab_size=self.preprocessor_.char_vocab_size,
            word_vocab_size=self.preprocessor_.word_vocab_size,
            num_labels=self.preprocessor_.label_size,
            embeddings=self.embeddings,
            dropout=self.dropout)

        self.model_, loss = self.model_.build()
        optimizer = Adam(lr=self.learning_rate)
        self.model_.compile(loss=loss, optimizer=optimizer)
        self.model_.summary()

        log.info('Training the model...')
        self.trainer_ = Trainer(self.model_, preprocessor=self.preprocessor_)

        x_train, x_valid, y_train, y_valid = train_test_split(X,
                                                              y,
                                                              test_size=0.1,
                                                              random_state=42)
        self.trainer_.train(x_train,
                            y_train,
                            x_valid=x_valid,
                            y_valid=y_valid,
                            batch_size=self.batch_size,
                            epochs=self.max_iter)

        self.tagger_ = Tagger(self.model_, preprocessor=self.preprocessor_)

        return self

    def predict(self, X):
        """ Predicts using the NER model.

            Parameters
            ----------
            X : list(list(str))
                list of list of tokens.
            
            Returns
            -------
            y : list(list(str))
                list of list of predicted BIO tags.
        """
        if self.tagger_ is None:
            raise ValueError(
                "No tagger found, either run fit() to train or load() a trained model"
            )

        log.info("Predicting from model...")
        ypreds = [self.tagger_.predict(" ".join(x)) for x in X]
        return ypreds

    def save(self, dirpath):
        """ Saves model to local disk, given a dirpath 
        
            Parameters
            -----------
            dirpath : str
                a directory where model artifacts will be saved. Model saves a 
                weights.h5 weights file, a params.json parameter file, and a 
                preprocessor.pkl preprocessor file.

            Returns
            -------
            None
        """
        if self.model_ is None or self.preprocessor_ is None:
            raise ValueError(
                "No model artifacts to save, either run fit() to train or load() a trained model"
            )

        if not os.path.exists(dirpath):
            os.makedirs(dirpath)

        weights_file = os.path.join(dirpath, "weights.h5")
        params_file = os.path.join(dirpath, "params.json")
        preprocessor_file = os.path.join(dirpath, "preprocessor.pkl")

        save_model(self.model_, weights_file, params_file)
        self.preprocessor_.save(preprocessor_file)

        write_param_file(self.get_params(),
                         os.path.join(dirpath, "params.yaml"))

    def load(self, dirpath):
        """ Loads a trained model from local disk, given the dirpath

            Parameters
            ----------
            dirpath : str
                a directory where model artifacts are saved.

            Returns
            -------
            self
        """
        if not os.path.exists(dirpath):
            raise ValueError("Model directory not found: {:s}".format(dirpath))

        weights_file = os.path.join(dirpath, "weights.h5")
        params_file = os.path.join(dirpath, "params.json")
        preprocessor_file = os.path.join(dirpath, "preprocessor.pkl")

        if not (os.path.exists(weights_file) or os.path.exists(params_file)
                or os.path.exists(preprocessor_file)):
            raise ValueError("Model files may be corrupted, exiting")

        self.model_ = load_model(weights_file, params_file)
        self.preprocessor_ = ELMoTransformer.load(preprocessor_file)
        self.tagger_ = Tagger(self.model_, preprocessor=self.preprocessor_)

        return self