def test_001_detect(self): """ Send two bursts, with zeros in between, and check they are both detected at the correct position and no false alarms occur """ n_zeros = 15 fft_len = 32 cp_len = 4 sig_len = (fft_len + cp_len) * 10 sync_symbol = [(random.randint(0, 1) * 2) - 1 for x in range(fft_len / 2)] * 2 tx_signal = [0,] * n_zeros + \ sync_symbol[-cp_len:] + \ sync_symbol + \ [(random.randint(0, 1)*2)-1 for x in range(sig_len)] tx_signal = tx_signal * 2 add = blocks.add_cc() sync = digital.ofdm_sync_sc_cfb(fft_len, cp_len) sink_freq = blocks.vector_sink_f() sink_detect = blocks.vector_sink_b() self.tb.connect(blocks.vector_source_c(tx_signal), (add, 0)) self.tb.connect(analog.noise_source_c(analog.GR_GAUSSIAN, .01), (add, 1)) self.tb.connect(add, sync) self.tb.connect((sync, 0), sink_freq) self.tb.connect((sync, 1), sink_detect) self.tb.run() sig1_detect = sink_detect.data()[0:len(tx_signal) / 2] sig2_detect = sink_detect.data()[len(tx_signal) / 2:] self.assertTrue( abs(sig1_detect.index(1) - (n_zeros + fft_len + cp_len)) < cp_len) self.assertTrue( abs(sig2_detect.index(1) - (n_zeros + fft_len + cp_len)) < cp_len) self.assertEqual(numpy.sum(sig1_detect), 1) self.assertEqual(numpy.sum(sig2_detect), 1)
def test_001_detect (self): """ Send two bursts, with zeros in between, and check they are both detected at the correct position and no false alarms occur """ n_zeros = 15 fft_len = 32 cp_len = 4 sig_len = (fft_len + cp_len) * 10 sync_symbol = [(random.randint(0, 1)*2)-1 for x in range(fft_len/2)] * 2 tx_signal = [0,] * n_zeros + \ sync_symbol[-cp_len:] + \ sync_symbol + \ [(random.randint(0, 1)*2)-1 for x in range(sig_len)] tx_signal = tx_signal * 2 add = blocks.add_cc() sync = digital.ofdm_sync_sc_cfb(fft_len, cp_len) sink_freq = blocks.vector_sink_f() sink_detect = blocks.vector_sink_b() self.tb.connect(blocks.vector_source_c(tx_signal), (add, 0)) self.tb.connect(analog.noise_source_c(analog.GR_GAUSSIAN, .01), (add, 1)) self.tb.connect(add, sync) self.tb.connect((sync, 0), sink_freq) self.tb.connect((sync, 1), sink_detect) self.tb.run() sig1_detect = sink_detect.data()[0:len(tx_signal)/2] sig2_detect = sink_detect.data()[len(tx_signal)/2:] self.assertTrue(abs(sig1_detect.index(1) - (n_zeros + fft_len + cp_len)) < cp_len) self.assertTrue(abs(sig2_detect.index(1) - (n_zeros + fft_len + cp_len)) < cp_len) self.assertEqual(numpy.sum(sig1_detect), 1) self.assertEqual(numpy.sum(sig2_detect), 1)
def run_flow_graph(sync_sym1, sync_sym2, data_sym): top_block = gr.top_block() carr_offset = random.randint(-max_offset/2, max_offset/2) * 2 tx_data = shift_tuple(sync_sym1, carr_offset) + \ shift_tuple(sync_sym2, carr_offset) + \ shift_tuple(data_sym, carr_offset) channel = [rand_range(min_chan_ampl, max_chan_ampl) * numpy.exp(1j * rand_range(0, 2 * numpy.pi)) for x in range(fft_len)] src = blocks.vector_source_c(tx_data, False, fft_len) chan = blocks.multiply_const_vcc(channel) noise = analog.noise_source_c(analog.GR_GAUSSIAN, wgn_amplitude) add = blocks.add_cc(fft_len) chanest = digital.ofdm_chanest_vcvc(sync_sym1, sync_sym2, 1) sink = blocks.vector_sink_c(fft_len) top_block.connect(src, chan, (add, 0), chanest, sink) top_block.connect(noise, blocks.stream_to_vector(gr.sizeof_gr_complex, fft_len), (add, 1)) top_block.run() channel_est = None carr_offset_hat = 0 rx_sym_est = [0,] * fft_len tags = sink.tags() for tag in tags: if pmt.symbol_to_string(tag.key) == 'ofdm_sync_carr_offset': carr_offset_hat = pmt.to_long(tag.value) self.assertEqual(carr_offset, carr_offset_hat) if pmt.symbol_to_string(tag.key) == 'ofdm_sync_chan_taps': channel_est = shift_tuple(pmt.c32vector_elements(tag.value), carr_offset) shifted_carrier_mask = shift_tuple(carrier_mask, carr_offset) for i in range(fft_len): if shifted_carrier_mask[i] and channel_est[i]: self.assertAlmostEqual(channel[i], channel_est[i], places=0) rx_sym_est[i] = (sink.data()[i] / channel_est[i]).real return (carr_offset, list(shift_tuple(rx_sym_est, -carr_offset_hat)))
def __init__(self, constellation, f, N0=0.25, seed=-666L): """ constellation - a constellation object used for modulation. f - a finite state machine specification used for coding. N0 - noise level seed - random seed """ super(trellis_tb, self).__init__() # packet size in bits (make it multiple of 16 so it can be packed in a short) packet_size = 1024 * 16 # bits per FSM input symbol bitspersymbol = int(round(math.log(f.I()) / math.log(2))) # bits per FSM input symbol # packet size in trellis steps K = packet_size / bitspersymbol # TX src = blocks.lfsr_32k_source_s() # packet size in shorts src_head = blocks.head(gr.sizeof_short, packet_size / 16) # unpack shorts to symbols compatible with the FSM input cardinality s2fsmi = blocks.packed_to_unpacked_ss(bitspersymbol, gr.GR_MSB_FIRST) # initial FSM state = 0 enc = trellis.encoder_ss(f, 0) mod = digital.chunks_to_symbols_sc(constellation.points(), 1) # CHANNEL add = blocks.add_cc() noise = analog.noise_source_c(analog.GR_GAUSSIAN, math.sqrt(N0 / 2), seed) # RX # data preprocessing to generate metrics for Viterbi metrics = trellis.constellation_metrics_cf(constellation.base(), digital.TRELLIS_EUCLIDEAN) # Put -1 if the Initial/Final states are not set. va = trellis.viterbi_s(f, K, 0, -1) # pack FSM input symbols to shorts fsmi2s = blocks.unpacked_to_packed_ss(bitspersymbol, gr.GR_MSB_FIRST) # check the output self.dst = blocks.check_lfsr_32k_s() self.connect(src, src_head, s2fsmi, enc, mod) self.connect(mod, (add, 0)) self.connect(noise, (add, 1)) self.connect(add, metrics, va, fsmi2s, self.dst)
def __init__(self, noise_voltage, freq, timing): gr.hier_block2.__init__(self, "channel_model", gr.io_signature(1, 1, gr.sizeof_gr_complex), gr.io_signature(1, 1, gr.sizeof_gr_complex)) timing_offset = filter.fractional_resampler_cc(0, timing) noise_adder = blocks.add_cc() noise = analog.noise_source_c(analog.GR_GAUSSIAN, noise_voltage, 0) freq_offset = analog.sig_source_c(1, analog.GR_SIN_WAVE, freq, 1.0, 0.0) mixer_offset = blocks.multiply_cc() self.connect(self, timing_offset) self.connect(timing_offset, (mixer_offset, 0)) self.connect(freq_offset, (mixer_offset, 1)) self.connect(mixer_offset, (noise_adder, 1)) self.connect(noise, (noise_adder, 0)) self.connect(noise_adder, self)
def run_flow_graph(sync_sym1, sync_sym2, data_sym): top_block = gr.top_block() carr_offset = random.randint(-max_offset / 2, max_offset / 2) * 2 tx_data = shift_tuple(sync_sym1, carr_offset) + \ shift_tuple(sync_sym2, carr_offset) + \ shift_tuple(data_sym, carr_offset) channel = [ rand_range(min_chan_ampl, max_chan_ampl) * numpy.exp(1j * rand_range(0, 2 * numpy.pi)) for x in range(fft_len) ] src = blocks.vector_source_c(tx_data, False, fft_len) chan = blocks.multiply_const_vcc(channel) noise = analog.noise_source_c(analog.GR_GAUSSIAN, wgn_amplitude) add = blocks.add_cc(fft_len) chanest = digital.ofdm_chanest_vcvc(sync_sym1, sync_sym2, 1) sink = blocks.vector_sink_c(fft_len) top_block.connect(src, chan, (add, 0), chanest, sink) top_block.connect( noise, blocks.stream_to_vector(gr.sizeof_gr_complex, fft_len), (add, 1)) top_block.run() channel_est = None carr_offset_hat = 0 rx_sym_est = [ 0, ] * fft_len tags = sink.tags() for tag in tags: if pmt.symbol_to_string(tag.key) == 'ofdm_sync_carr_offset': carr_offset_hat = pmt.to_long(tag.value) self.assertEqual(carr_offset, carr_offset_hat) if pmt.symbol_to_string(tag.key) == 'ofdm_sync_chan_taps': channel_est = shift_tuple( pmt.c32vector_elements(tag.value), carr_offset) shifted_carrier_mask = shift_tuple(carrier_mask, carr_offset) for i in range(fft_len): if shifted_carrier_mask[i] and channel_est[i]: self.assertAlmostEqual(channel[i], channel_est[i], places=0) rx_sym_est[i] = (sink.data()[i] / channel_est[i]).real return (carr_offset, list(shift_tuple(rx_sym_est, -carr_offset_hat)))
def __init__(self, noise_voltage, freq, timing): gr.hier_block2.__init__( self, "channel_model", gr.io_signature(1, 1, gr.sizeof_gr_complex), gr.io_signature(1, 1, gr.sizeof_gr_complex), ) timing_offset = filter.fractional_interpolator_cc(0, timing) noise_adder = blocks.add_cc() noise = analog.noise_source_c(analog.GR_GAUSSIAN, noise_voltage, 0) freq_offset = analog.sig_source_c(1, analog.GR_SIN_WAVE, freq, 1.0, 0.0) mixer_offset = blocks.multiply_cc() self.connect(self, timing_offset) self.connect(timing_offset, (mixer_offset, 0)) self.connect(freq_offset, (mixer_offset, 1)) self.connect(mixer_offset, (noise_adder, 1)) self.connect(noise, (noise_adder, 0)) self.connect(noise_adder, self)