net = Network() net = run_control._collect_brian_objects(net, input_path, neurons, synapses, rec['neurons'], rec['synapses']) # run simulation #======================================================================= # set time step defaultclock.dt = P.simulation['dt'] # store initialized network state net.store('initial') # set number of pre and post synaptic neurons Npre_1=1 Npost_1=1 # dictionary for group data over multiple trials group_df = analysis._load_group_data(directory=group_data_directory, file_name=group_data_filename, df=True) # set number of trials P.simulation['trials']=3 for trial in range(P.simulation['trials']): # restore initial conditions after each trial net.restore('initial') # randomize input weights P.init_synapses['1']['w_ampa'] = param._weight_matrix_randn(Npre=Npre_1, Npost=Npost_1, w_mean=1, w_std=0.5) P.init_synapses['2']['w_ampa'] = param._weight_matrix_randn(Npre=Npre_1, Npost=Npost_1, w_mean=1, w_std=0.5) # set initial weights synapses['1'].w_ampa = P.init_synapses['1']['w_ampa'] synapses['2'].w_ampa = P.init_synapses['2']['w_ampa']
# FIXME use timed array to turn field on and off at specific time # choose a poissoninput group that is always paired with dcs # use the same timedarray (corresponding row from input_timed_array) # FIXME assign spatial variable to each neuron and use that to design connectivity # directory and file name to store data #==================================================================== exp_name = '.'.join(__name__.split('analysis_')[1:]) group_data_directory = 'Datatemp/' + exp_name + '/' group_data_filename = exp_name + '_data.pkl' group_data_filename_train = exp_name + '_data_train.pkl' group_data_filename_test = exp_name + '_data_test.pkl' # dictionary for group data over multiple trials train_group_df = analysis._load_group_data(directory=group_data_directory, file_name=group_data_filename_train, df=True) test_group_df = analysis._load_group_data(directory=group_data_directory, file_name=group_data_filename_test, df=True) # print train_group_df.keys() # df_w_train = train_group_df[train_group_df.variable=='w_clopath'] # df_u_train = train_group_df[train_group_df.variable=='u'] # df_w_test = test_group_df[train_group_df.variable=='w_clopath'] # df_u_test = test_group_df[train_group_df.variable=='u'] # df_w_train_FF = df_w_train[df_w_train.group_name=='FF_train'] # df_w_train_EE = df_w_train[df_w_train.group_name=='EE'] # df_u_train_E = df_u_train[df_u_train.group_name=='E'] # df_u_train_I = df_u_train[df_u_train.group_name=='I']