Пример #1
0
class PriceSetter:
    def __init__(self, first_year=2016, final_year=2040, scenarios_per_year=5):
        self.dual = Dual(first_year, final_year, scenarios_per_year)
        self.data = ModelData()
        self.analysis = AnalyseResults()

        # Common model components. May need to update these values
        self.common = CommonComponents(first_year=first_year,
                                       final_year=final_year,
                                       scenarios_per_year=scenarios_per_year)

        # Model sets
        self.sets = self.get_model_sets()

    @staticmethod
    def convert_to_frame(results, index_name, variable_name):
        """Convert dict to pandas DataFrame"""

        # Convert dictionary to DataFrame
        df = pd.Series(
            results[variable_name]).rename_axis(index_name).to_frame(
                name=variable_name)

        return df

    def get_model_sets(self):
        """Define sets used in model"""

        # Get all sets used within the model
        m = ConcreteModel()
        m = self.common.define_sets(m)

        return m

    def get_eligible_generators(self):
        """Find generators which are eligible for rebates / penalties"""

        # Eligible generators
        eligible_generators = [
            g for g in self.sets.G_THERM.union(self.sets.G_C_WIND,
                                               self.sets.G_C_SOLAR)
        ]

        return eligible_generators

    def get_generator_cost_parameters(self, results_dir, filename,
                                      eligible_generators):
        """
        Get parameters affecting generator marginal costs, and compute the net marginal cost for a given policy
        """

        # Model results
        results = self.analysis.load_results(results_dir, filename)

        # Price setting algorithm
        costs = pd.Series(results['C_MC']).rename_axis(
            ['generator', 'year']).to_frame(name='marginal_cost')

        # Add emissions intensity baseline
        costs = costs.join(pd.Series(
            results['baseline']).rename_axis('year').to_frame(name='baseline'),
                           how='left')

        # Add permit price
        costs = (costs.join(pd.Series(
            results['permit_price']).rename_axis('year').to_frame(
                name='permit_price'),
                            how='left'))

        # Emissions intensities for existing and candidate units
        existing_emissions = self.analysis.data.existing_units.loc[:, (
            'PARAMETERS', 'EMISSIONS')]
        candidate_emissions = self.analysis.data.candidate_units.loc[:, (
            'PARAMETERS', 'EMISSIONS')]

        # Combine emissions intensities into a single DataFrame
        emission_intensities = (pd.concat([
            existing_emissions, candidate_emissions
        ]).rename_axis('generator').to_frame('emissions_intensity'))

        # Join emissions intensities
        costs = costs.join(emission_intensities, how='left')

        # Total marginal cost (taking into account net cost under policy)
        costs['net_marginal_cost'] = (
            costs['marginal_cost'] +
            (costs['emissions_intensity'] - costs['baseline']) *
            costs['permit_price'])

        def correct_for_ineligible_generators(row):
            """Update costs so only eligible generators have new costs (ineligible generators have unchanged costs)"""

            if row.name[0] in eligible_generators:
                return row['net_marginal_cost']
            else:
                return row['marginal_cost']

        # Correct for ineligible generators
        costs['net_marginal_cost'] = costs.apply(
            correct_for_ineligible_generators, axis=1)

        return costs

    def get_price_setting_generators(self, results_dir, filename,
                                     eligible_generators):
        """Find price setting generators"""

        # Prices
        prices = self.analysis.parse_prices(results_dir, filename)

        # Generator SRMC and cost parameters (emissions intensities, baselines, permit prices)
        generator_costs = self.get_generator_cost_parameters(
            results_dir, filename, eligible_generators)

        def get_price_setting_generator(row):
            """Get price setting generator, price difference, and absolute real price"""

            # Year and average real price for a given row
            year, price = row.name[0], row['average_price_real']

            # Absolute difference between price and all generator SRMCs
            abs_price_difference = generator_costs.loc[(
                slice(None), year), 'net_marginal_cost'].subtract(price).abs()

            # Price setting generator and absolute price difference for that generator
            generator, difference = abs_price_difference.idxmin(
            )[0], abs_price_difference.min()

            # Generator SRMC
            srmc = generator_costs.loc[(generator, year), 'net_marginal_cost']

            # Update generator name to load shedding if price very high (indicative of load shedding)
            if difference > 9000:
                generator = 'LOAD-SHEDDING'
                difference = np.nan
                srmc = np.nan

            return pd.Series({
                'generator': generator,
                'difference': difference,
                'price': price,
                'srmc': srmc
            })

        # Find price setting generators
        price_setters = prices.apply(get_price_setting_generator, axis=1)

        # Combine output into single dictionary
        output = {
            'price_setters': price_setters,
            'prices': prices,
            'generator_costs': generator_costs
        }

        return output

    def get_dual_component_existing_thermal(self, results):
        """Get dual variable component of dual constraint for existing thermal units"""

        # def get_existing_thermal_unit_dual_information():
        dfs = []

        for v in ['SIGMA_1', 'SIGMA_2', 'SIGMA_20', 'SIGMA_23']:
            print(v)
            index = ('generator', 'year', 'scenario', 'interval')
            dfs.append(self.convert_to_frame(results, index, v))

        # Place all information in a single DataFrame
        df_c = pd.concat(dfs, axis=1).dropna()

        # Get offset values
        df_c['SIGMA_20_PLUS_1'] = df_c['SIGMA_20'].shift(-1)
        df_c['SIGMA_23_PLUS_1'] = df_c['SIGMA_23'].shift(-1)

        return df_c

    def k(self, g):
        """Mapping generator to the NEM zone to which it belongs"""

        if g in self.sets.G_E:
            return self.data.existing_units_dict[('PARAMETERS', 'NEM_ZONE')][g]

        elif g in self.sets.G_C.difference(self.sets.G_STORAGE):
            return self.data.candidate_units_dict[('PARAMETERS', 'ZONE')][g]

        elif g in self.sets.G_STORAGE:
            return self.data.battery_properties_dict['NEM_ZONE'][g]

        else:
            raise Exception(f'Unexpected generator: {g}')

    @staticmethod
    def merge_generator_node_prices(dual_component, zone_prices):
        """Get prices at the node to which a generator is connected"""

        # Merge price information
        df = (pd.merge(dual_component.reset_index(),
                       zone_prices.reset_index(),
                       how='left',
                       left_on=['zone', 'year', 'scenario', 'interval'],
                       right_on=['zone', 'year', 'scenario',
                                 'interval']).set_index([
                                     'generator', 'year', 'scenario',
                                     'interval', 'zone'
                                 ]))

        return df

    def get_generator_cost_information(self, results):
        """Merge generator cost information"""

        # Load results
        delta = self.convert_to_frame(results, 'year', 'DELTA')
        rho = self.convert_to_frame(results, ('year', 'scenario'), 'RHO')
        emissions_rate = self.convert_to_frame(results, 'generator',
                                               'EMISSIONS_RATE')
        baseline = self.convert_to_frame(results, 'year', 'baseline')
        permit_price = self.convert_to_frame(results, 'year', 'permit_price')
        marginal_cost = self.convert_to_frame(results, ('generator', 'year'),
                                              'C_MC')

        # Join information into single dataFrame
        df_c = marginal_cost.join(emissions_rate, how='left')
        df_c = df_c.join(baseline, how='left')
        df_c = df_c.join(permit_price, how='left')
        df_c = df_c.join(delta, how='left')
        df_c = df_c.join(rho, how='left')

        # Add a scaling factor for the final year
        final_year = df_c.index.levels[0][-1]
        df_c['scaling_factor'] = df_c.apply(
            lambda x: 1 if int(x.name[0]) < final_year else 1 + (1 / 0.06),
            axis=1)

        return df_c

    def merge_generator_cost_information(self, df, results):
        """Merge generator cost information from model"""

        # Get generator cost information
        generator_cost_info = self.get_generator_cost_information(results)

        df = (pd.merge(df.reset_index(),
                       generator_cost_info.reset_index(),
                       how='left').set_index([
                           'generator', 'year', 'scenario', 'interval', 'zone'
                       ]))

        return df

    def get_constraint_body_existing_thermal(self, results):
        """Get body of dual power output constraint for existing thermal generators"""

        # Components of dual power output constraint
        duals = self.get_dual_component_existing_thermal(results)

        # Map between generators and zones
        generators = duals.index.levels[0]
        generator_zone_map = (pd.DataFrame.from_dict(
            {g: self.k(g)
             for g in generators},
            orient='index',
            columns=['zone']).rename_axis('generator'))

        # Add NEM zone to index
        duals = duals.join(generator_zone_map,
                           how='left').set_index('zone', append=True)

        # Power balance dual variables
        var_index = ('zone', 'year', 'scenario', 'interval')
        prices = self.convert_to_frame(results, var_index, 'PRICES')

        # Merge price information
        c = self.merge_generator_node_prices(duals, prices)

        # Merge operating cost information
        c = price_setter.merge_generator_cost_information(c, results)

        return c

    def evaluate_constraint_body_existing_thermal(self, results):
        """Evaluate constraint body information for existing thermal units (should = 0)"""

        # Get values of terms constituting the constraint
        c = self.get_constraint_body_existing_thermal(results)

        # Correct for all intervals excluding the last interval of each scenario
        s_1 = (-c['SIGMA_1'].abs() + c['SIGMA_2'].abs() - c['PRICES'].abs() +
               (c['DELTA'] * c['RHO'] * c['scaling_factor'] *
                (c['C_MC'] +
                 (c['EMISSIONS_RATE'] - c['baseline']) * c['permit_price'])) +
               c['SIGMA_20'].abs() - c['SIGMA_20_PLUS_1'].abs() -
               c['SIGMA_23'].abs() + c['SIGMA_23_PLUS_1'].abs())

        # Set last interval to NaN
        s_1.loc[(slice(None), slice(None), slice(None), 24,
                 slice(None))] = np.nan

        # Last interval of each scenario
        s_2 = (-c['SIGMA_1'].abs() + c['SIGMA_2'].abs() - c['PRICES'].abs() +
               (c['DELTA'] * c['RHO'] * c['scaling_factor'] *
                (c['C_MC'] +
                 (c['EMISSIONS_RATE'] - c['baseline']) * c['permit_price'])) +
               c['SIGMA_20'].abs() - c['SIGMA_23'].abs())

        # Update so corrected values for last interval are accounted for
        s_3 = s_1.to_frame(name='body')
        s_3.update(s_2.to_frame(name='body'), overwrite=False)

        return s_3

    def evaluate_constraint_dual_component_existing_thermal(self, results):
        """Evaluate dual component of constraint"""

        # Get values of terms constituting the constraint
        c = self.get_constraint_body_existing_thermal(results)

        # Dual component - correct for intervals excluding the last interval of each scenario
        s_1 = (-c['SIGMA_1'].abs() + c['SIGMA_2'].abs() + c['SIGMA_20'].abs() -
               c['SIGMA_20_PLUS_1'].abs() - c['SIGMA_23'].abs() +
               c['SIGMA_23_PLUS_1'].abs())

        # Set last interval to NaN
        s_1.loc[(slice(None), slice(None), slice(None), 24,
                 slice(None))] = np.nan

        # Dual component - correct for last interval of each scenario
        s_2 = -c['SIGMA_1'].abs() + c['SIGMA_2'].abs() + c['SIGMA_20'].abs(
        ) - c['SIGMA_23'].abs()

        # Combine components
        s_3 = s_1.to_frame(name='body')
        s_3.update(s_2.to_frame(name='body'), overwrite=False)

        return s_3

    def get_price_setting_generators_from_model_results(self, results):
        """Find price setting generators"""

        # Generators eligible for a rebate / penalty under the scheme
        eligible_generators = self.get_eligible_generators()

        # Generator costs
        generator_costs = self.get_generator_cost_information(results)

        # Get prices in each zone for each dispatch interval
        index = ('zone', 'year', 'scenario', 'interval')
        zone_price = self.convert_to_frame(results, index, 'PRICES')

        def correct_permit_prices(row):
            """Only eligible generators face a non-zero permit price"""

            if row.name[1] in eligible_generators:
                return row['permit_price']
            else:
                return 0

        # Update permit prices
        generator_costs['permit_price'] = generator_costs.apply(
            correct_permit_prices, axis=1)

        # Net marginal costs
        generator_costs['net_marginal_cost'] = (
            generator_costs['scaling_factor'] * generator_costs['DELTA'] *
            generator_costs['RHO'] *
            (generator_costs['C_MC'] +
             (generator_costs['EMISSIONS_RATE'] - generator_costs['baseline'])
             * generator_costs['permit_price']))

        def get_price_setter(row):
            """Find generator whose marginal cost is closest to interval marginal cost"""

            # Extract zone, year, scenario, and interval information
            z, y, s, t = row.name

            # Power balance constraint marginal cost for given interval (related to price)
            p = abs(row['PRICES'])

            # Net marginal costs of all generators for the given interval
            generator_mc = generator_costs.loc[(y, slice(None), s), :]

            # Scenario duration and discount factor (arbitrarily selecting YWPS4 to get a single row)
            rho, delta = generator_costs.loc[(y, 'YWPS4', s),
                                             ['RHO', 'DELTA']].values

            # Difference between marginal cost in given interval and all generator marginal costs for that interval
            diff = generator_mc['net_marginal_cost'].subtract(p).abs()

            # Extract generator ID and absolute cost difference
            g, cost_diff = diff.idxmin(), diff.min()

            # Details of the price setting generator
            cols = [
                'EMISSIONS_RATE', 'baseline', 'permit_price', 'C_MC',
                'net_marginal_cost', 'scaling_factor'
            ]
            emissions_rate, baseline, permit_price, marginal_cost, net_marginal_cost, scaling_factor = generator_costs.loc[
                g, cols]

            # Compute normalised price and cost differences
            price_normalised = p / (delta * rho * scaling_factor)
            cost_diff_normalised = cost_diff / (delta * rho)
            net_marginal_cost_normalised = net_marginal_cost / (delta * rho *
                                                                scaling_factor)

            return (g[1], p, price_normalised, cost_diff, cost_diff_normalised,
                    emissions_rate, baseline, permit_price, marginal_cost,
                    net_marginal_cost, net_marginal_cost_normalised)

        # Get price setting generator information
        ps = zone_price.apply(get_price_setter, axis=1)

        # Convert column of tuples to DataFrame with separate columns
        columns = [
            'generator', 'price_abs', 'price_normalised', 'difference_abs',
            'difference_normalised', 'emissions_rate', 'baseline',
            'permit_price', 'marginal_cost', 'net_marginal_cost',
            'net_marginal_cost_normalised'
        ]
        ps = pd.DataFrame(ps.to_list(),
                          columns=columns,
                          index=zone_price.index)

        return ps
Пример #2
0
    results_directory = os.path.join(os.path.dirname(__file__), os.path.pardir,
                                     '3_model', 'linear', 'output', 'local')
    tmp_directory = os.path.join(os.path.dirname(__file__), 'output', 'tmp',
                                 'local')
    figures_directory = os.path.join(os.path.dirname(__file__), 'output',
                                     'figures')

    # Object used to analyse results and get price target trajectory
    analysis = AnalyseResults()

    # Get plot data
    plot_data = PlotData(tmp_directory)
    plots = CreatePlots(tmp_directory, figures_directory)

    # Get BAU price trajectories
    bau = analysis.load_results(results_directory, 'bau_case.pickle')
    bau_prices = analysis.get_year_average_price(bau['PRICES'], -1)
    bau_price_trajectory = bau_prices['average_price_real'].to_dict()
    bau_first_year_trajectory = {
        y: bau_price_trajectory[2016]
        for y in range(2016, 2031)
    }

    # Create plots
    plots.plot_tax_rep_comparison()
    plots.plot_transition_year_comparison('baudev')
    plots.plot_transition_year_comparison('ptar')
    plots.plot_transition_year_comparison('pdev')

    plot_params = {
        'price_trajectory': bau_price_trajectory,
Пример #3
0
class Targets:
    def __init__(self):
        # Object used to analyse results
        self.analysis = AnalyseResults()

    @staticmethod
    def get_year_emission_intensity_target(initial_emissions_intensity,
                                           half_life, year, start_year):
        """Get half-life emissions intensity target for each year in model horizon"""

        # Re-index such that first year in model horizon is t = 0
        t = year - start_year

        exponent = (-t / half_life)

        return initial_emissions_intensity * (2**exponent)

    def get_emissions_intensity_target(self, half_life):
        """Get sequence of yearly emissions intensity targets"""

        # Get emissions intensities for each year of model horizon - BAU case
        df_bau = self.analysis.get_year_system_emissions_intensities(
            'primal_bau_results.pickle')
        df_bau = df_bau.rename(
            columns={'emissions_intensity': 'bau_emissions_intensity'})

        # First and last years of model horizon
        start, end = df_bau.index[[0, -1]]

        # Initial emissions intensity
        E_0 = df_bau.loc[start, 'bau_emissions_intensity']

        # Emissions intensity target sequence
        target_sequence = {
            y: self.get_year_emission_intensity_target(E_0, half_life, y,
                                                       start)
            for y in range(start, end + 1)
        }

        # Convert to DataFrame
        df_sequence = pd.Series(target_sequence).rename_axis('year').to_frame(
            'emissions_intensity_target')

        # Combine with bau emissions intensities
        df_c = pd.concat([df_bau, df_sequence], axis=1)

        return df_c

    def get_first_year_average_real_bau_price(self):
        """Get average price in first year of model horizon"""

        # Get average price in first year of model horizon (real price)
        prices = self.analysis.get_year_average_price(
            'primal_bau_results.pickle')

        return prices.iloc[0]['average_price_real']

    @staticmethod
    def load_emissions_intensity_target(filename):
        """Load emissions intensity target"""

        # Check that emissions target loads correctly
        with open(os.path.join(os.path.dirname(__file__), 'output', filename),
                  'r') as f:
            target = json.load(f)

        # Convert keys from strings to integers
        target = {int(k): v for k, v in target.items()}

        return target

    @staticmethod
    def load_first_year_average_bau_price(filename):
        """Load average price in first year - BAU scenario"""

        # Check that price loads correctly
        with open(os.path.join(os.path.dirname(__file__), 'output', filename),
                  'r') as f:
            price = json.load(f)

        return price['first_year_average_price']

    def get_cumulative_emissions_target(self, filename, frac):
        """
        Load emissions target

        Parameters
        ----------
        filename : str
            Name of results file on which emissions target will be based

        frac : float
            Target emissions reduction. E.g. 0.5 would imply emissions should be less than or equal to 50% of total
            emissions observed in results associated with 'filename'
        """

        return float(self.analysis.get_total_emissions(filename) * frac)

    @staticmethod
    def load_cumulative_emissions_target():
        """Load cumulative emissions target"""

        with open(
                os.path.join(os.path.dirname(__file__), 'output',
                             'cumulative_emissions_target.json'), 'r') as f:
            emissions_target = json.load(f)

        return emissions_target['cumulative_emissions_target']

    def get_interim_emissions_target(self, filename):
        """Load total emissions in each year when pursuing a cumulative emissions cap"""

        # Get emissions in each year of model horizon when pursuing cumulative target
        year_emissions = self.analysis.get_year_emissions(filename)

        return year_emissions

    @staticmethod
    def load_interim_emissions_target():
        """Load interim emissions target"""

        with open(
                os.path.join(os.path.dirname(__file__), 'output',
                             'interim_emissions_target.json'), 'r') as f:
            emissions_target = json.load(f)

        # Convert years to integers
        emissions_target = {int(k): v for k, v in emissions_target.items()}

        return emissions_target

    def get_cumulative_emissions_cap_carbon_price(self):
        """Get carbon price from cumulative emissions cap model results"""

        # Results
        results = self.analysis.load_results(
            'cumulative_emissions_cap_results.pickle')

        return results['CUMULATIVE_EMISSIONS_CAP_CONS_DUAL']

    def get_interim_emissions_cap_carbon_price(self):
        """Get carbon price from interim emissions cap model results"""

        # Results
        results = self.analysis.load_results(
            'interim_emissions_cap_results.pickle')

        return results['INTERIM_EMISSIONS_CAP_CONS_DUAL']

    @staticmethod
    def get_envelope(n_0, half_life, first_year, year):
        """Get revenue envelope level for a given year"""

        # Year with first year = 0
        t = year - first_year

        return n_0 * np.power(0.5, (t / half_life))