v1 /= vs[0] v2 /= vs[1] # - - - - - - - - - - - - - - - - - - - - - - - - - - # # Extract the fluctuations v1m = np.mean(v1, axis=(0)) v2m = np.mean(v2, axis=(0)) # Extract fluctuating part and normalize by variance # Reuse the v1 and v2 variables to store values v1 -= v1m v2 -= v2m # - - - - - - - - - - - - - - - - - - - - - - - - - - # # Now check whether the given indices make sense ijk1 = sensibleIds(np.array(ijk1), x, y, z) ijk2 = sensibleIds(np.array(ijk2), x, y, z) print(' Check (1): i, j, k = {}'.format(ijk1)) print(' Check (2): i, j, k = {}'.format(ijk2)) nvz = (ijk2[2] - ijk1[2]) + 1 idz = range(ijk1[2], ijk2[2] + 1) nvy = (ijk2[1] - ijk1[1]) + 1 idy = range(ijk1[1], ijk2[1] + 1) nvx = (ijk2[0] - ijk1[0]) + 1 idx = range(ijk1[0], ijk2[0] + 1) Cv = np.zeros((nt, nvz, nvy, nvx)) d = np.zeros((nvz, nvy, nvx)) # - - - - - - - - - - - - - - - - - - - - - - - - - - # # Compute covariance for i in xrange(nvx):
nameDict['yname'] = args.yname nameDict['zname'] = args.zname # First fluctuation component nameDict['varname'] = varname[0] cl = 1 ncDict = read3dDataFromNetCDF( filename , nameDict, cl ) v = ncDict['v'] # 'v' is a generic name for a variable in ncDict # Spatial coords and time x = ncDict['x']; y = ncDict['y']; z = ncDict['z'] time = ncDict['time'] # Now check whether the given indices make sense # Here we set i = 0 and j = 0. ijk1 = sensibleIds( np.array([0,0,kIds[0]]), x, y, z ) ijk2 = sensibleIds( np.array([0,0,kIds[1]]), x, y, z ) print(' Check (1): i, j, k = {}'.format(ijk1)) print(' Check (2): i, j, k = {}'.format(ijk2)) # = = = = = = = = = = = = = # Mean and variance vmean = np.mean(v, axis=(0)) # Extract fluctuating part and normalize by variance # Reuse the v variable v -= vmean # Assemble the quadrant analysis dict wlDict = dict() wlDict['wavelet'] = wavelet