Пример #1
0
            efbest = float(efermis[ibest]) 
            print 'ebest', ebest
            print 'e-fermi best', efbest
        err = abs(en_per_atom-ebest)
        ef_err = abs(efermis - efbest)
        ns = [ms[j]*dets[j] for j in range(len(dets))]  
        
        #plots
        [[ns,ms,en_per_atom,efermis,NkIBZ,NkfullBZ,dets],zerolist] = removezeros([ns,ms,en_per_atom,efermis,NkIBZ,NkfullBZ,dets])#for structures that were not finished and have zero entries
        #    ebest = en_per_atom[argmax(ns)]
        #    efbest = efermis[argmax(ns)]
        err = abs(en_per_atom-ebest)+1e-8 #do these again with only the finished runs
        ef_err = abs(efermis - efbest)+1e-8

        #write important arrays to file
        writefile([str(j)+'\n' for j in ns],'ns%s' % structi)
        writefile([str(j)+'\n' for j in ms],'ms%s' % structi)
        writefile([str(j)+'\n' for j in NkIBZ],'NkIBZ%s' % structi)
        writefile([str(j)+'\n' for j in NkfullBZ],'NkfullBZ%s' % structi)
        writefile([str(j)+'\n' for j in dets],'dets%s' % structi)
        writefile([str(j)+'\n' for j in err],'err%s' % structi)
        writefile([str(j)+'\n' for j in ef_err],'ef_err%s' % structi)
        
# log err vs n for all structs
os.chdir(tempdir)
fig = figure()
ax1 = fig.add_subplot(111)
#    ax1.set_color_cycle(['r','b','g','c', 'm', 'y', 'k'])
xlabel('n in cubic grid')
ylabel('Error (eV)') 
title('Structure noise '+title_detail+':\nTheoretical values: max n on struct 1; 1e-8 mark')
Пример #2
0
    weights_in = True
#print 'weights_in', weights_in
#Find maximum and min formation energies
for i, line in enumerate(lines):
    if 'FE' in line:
        energy = float(line.split()[line.split().index('FE')+2].split(',')[0])  #FE = 1.2578,  etc.  remove any ","
        FEs.append(energy)
    if '#Energy' in line:
        indices.append(i+2) #where weights should appear 
FEmax = amax(FEs)
FEmin = amin(FEs)
indices = array(indices)

#Write weights
for i in range(len(FEs)):
    if weights_in:
        lines[indices[i]-2] = '#Energy and weight'+'\n'
        lines[indices[i]] = str(weightfunc(FEs[i],FEmax,FEmin))+'\n'
    else: #have to add lines
        lines.insert(indices[i],str(weightfunc(FEs[i],FEmax,FEmin))+'\n')
        indices += 1 #increment all indices by one to handle new lines
writefile(lines,outfile)

print 'Number of structures weighted', len(FEs)

print 'Done'
        



Пример #3
0
def analyze(paths): #as used with the parameter search, paths will have only one entry.  But keep consistent with interactive vaspoutCombineRunsExtData
    extpath = None
    useSym = False
    coloring = 'method'
    # coloring = 'indiv'
    doLegend = True
    doLabel = True
    smoothFactor = 2.0
    filter = '_' #string must be in dir name to be included
    filter2 = None #'Cu_1' #for single structures.  set to None if using filter1 only
    summaryPath = paths[0]
    #count the number of plots:
    iplot = 0
    maxCalcs = 0
    maxNk = 0
    methods = []
    for ipath,path in enumerate(paths):
        method = path.split('_')[-1].split('/')[0]
        methods.append(method)
        os.chdir(path)
        if filter2 == None:
            structs = sorted([d for d in os.listdir(os.getcwd()) if os.path.isdir(d) and filter in d])
        else:
            structs = sorted([d for d in os.listdir(os.getcwd()) if os.path.isdir(d) and d==filter2])
        for struct in structs:
            os.chdir(struct)
            iplot += 1
            calcs = sorted([d for d in os.listdir(os.getcwd()) if os.path.isdir(d)])
            if len(calcs)>maxCalcs: maxCalcs = len(calcs)
            os.chdir(path)
    
    #external data is of the form extpath/atom_method/struct.csv.  The csv has energies vs nK
    if not extpath is None:
        os.chdir(extpath)
        atoms_methods = sorted([d for d in os.listdir(extpath) if os.path.isdir(d) and filter in d])# os.chdir(extpath)
        for atom_method in atoms_methods:
            atom = atom_method.split('_')[0]
            os.chdir(atom_method)
            os.system('rm -r .*lock*')
            for structfile in os.listdir(os.getcwd()):
                if atom not in structfile:
                    os.system('mv {} {}_{}'.format(structfile,atom,structfile)) #so that file has atom name at beginning
            if filter2 == None:
                structfiles = sorted([d for d in os.listdir(os.getcwd()) if os.path.getsize(d)>0])
            else:
                structfiles = sorted([d for d in os.listdir(os.getcwd()) if '_'.join(d.split('_')[:2])==filter2 and os.path.getsize(d)>0])
            for structfile in structfiles:
                iplot += 1
                #count number of points in this structfile
                lines = readfile(structfile)
                if len(lines)>maxCalcs: maxCalcs = len(lines)     
            os.chdir(extpath)
    
    nplots = iplot 
    if nplots < len(paths): sys.exit('Stop.  Structures do not match filter')      
    data = zeros(nplots,dtype = [('ID', 'S25'),('color', 'S15'),('method', 'S15'),\
                                 ('nDone','int32'),('nAtoms','int32'),('nops','int8'),\
                                 ('IBZvolcut','float'),('IBZvol','float'),\
                                 ('eners', '{}float'.format(maxCalcs)), ('errs', '{}float'.format(maxCalcs)),\
                                 ('nKs', '{}int16'.format(maxCalcs)),('ns', '{}int8'.format(maxCalcs))])    
    # style.use('bmh')
    # for i, item in enumerate(rcParams['axes.prop_cycle']):
    #     colorsList.append(item['color']) 
    style.use('fivethirtyeight')
    # for i, item in enumerate(rcParams['axes.prop_cycle'][:-2]):
    #     colorsList.append(item['color']) 
    
    colorsList = [u'#30a2da', u'#fc4f30', u'#e5ae38', u'#6d904f', u'#8b8b8b',
                  u'#348ABD', u'#A60628', u'#7A68A6', u'#467821', u'#D55E00', 
                  u'#CC79A7', u'#56B4E9', u'#009E73', u'#F0E442', u'#0072B2']
    
    colorsList = colorsList + ['b','m','y','c','k']
    rcParams.update({'figure.autolayout': True})  
    rcParams['axes.facecolor'] = 'white' 
    rcParams['axes.linewidth'] = 1.0  
    rcParams['axes.edgecolor'] = 'black' # axisbg=axescolor
    rcParams['savefig.facecolor'] = 'white' # axisbg=axescolor
    rcParams['lines.markersize'] = 4.5
    #read all the data 
    iplot = -1
    for ipath, path in enumerate(paths): #my data
        tag = path.split('/')[-1][-7:]
        os.chdir(path)
        if filter2 == None:
            structs = sorted([d for d in os.listdir(os.getcwd()) if os.path.isdir(d) and filter in d])
        else:
            structs = sorted([d for d in os.listdir(os.getcwd()) if os.path.isdir(d) and d==filter2])
        nStructs = len(structs)
#         print structs,path
        for istruct,struct in enumerate(structs):
    #         print 'test', istruct, struct
#             print 'struct',struct
            os.chdir(struct)
            if coloring == 'indiv':
    #             if iplot < nplots -1:
                color = rgb2hex(cm.jet(1.*(iplot+1)/float(nplots)))
    #             else:
    #                 color = 'k' 
            elif coloring == 'method':
    #             color =  colorsList[ipath]     
                color = None
            calcs = sorted([d for d in os.listdir(os.getcwd()) if os.path.isdir(d) and os.path.exists('{}/OUTCAR'.format(d))])
            energies = []
            nKs = []
            ns = [] #the base n of the run run
            nDone = 0
            if useSym:
                try:
                    nops,IBZvolcut,IBZvol = readSym(calcs[0])
                except:
                    sys.exit('Stopping. readSym failed. Set useSym to False')
            for calc in calcs:  
                if electronicConvergeFinish(calc):
                    ener = getEnergy(calc) #in energy/atom
                    if not areEqual(ener,0,1e-5):
                        nDone +=1
                        energies.append(ener)
                        if 'vc' in path:
                            nK = getNkIBZ(calc,'KPOINTS')
                            
                        else:
                            nK = getNkIBZ(calc,'IBZKPT')
                        if nK > maxNk: maxNk = nK
                        nKs.append(nK)
                        ns.append(int(calc.split('_')[-1]))
            #sort by increasing number of kpoints
            if len(energies)>0: 
                iplot += 1
                nKs = array(nKs)
                energies = array(energies)
                ns = array(ns)
                order = argsort(nKs)
        #         print 'struct',struct
        #         print 'energies',energies
                energies = energies[order]
                ns = ns[order]
                nKs = sort(nKs)
                eref = energies[-1]#the last energy of each struct is that of the most kpoints   
                errs = abs(energies-eref)*1000 + 1e-4 #now in meV 
                data[iplot]['ID'] = '{} {}'.format(struct,tag)
                nAtoms = getNatoms('{}/POSCAR'.format(calc))
                data[iplot]['nAtoms'] = nAtoms
                if useSym:
                    data[iplot]['nops'] = nops
                    data[iplot]['IBZvolcut'] = IBZvolcut
                data[iplot]['nDone'] = nDone
                data[iplot]['eners'][:nDone] = energies
                data[iplot]['errs'][:nDone] = errs
                data[iplot]['nKs'][:nDone] = nKs
                data[iplot]['ns'][:nDone] = ns
                data[iplot]['color'] = color
                method = path.split('_')[-1].split('/')[0]
                data[iplot]['method'] = method
            os.chdir(path)
    # os.chdir(extpath)
    if not extpath is None:
        os.chdir(extpath)
#         print; print atoms_methods
        for atom_method in atoms_methods:
            os.chdir(atom_method)
            if coloring == 'method':
                color = None
                if 'MP' in atom_method: 
    #                 color = colorsList[len(paths)]
                    method = 'MP'
                    
                elif 'Mueller' in atom_method:
    #                 color = colorsList[len(paths)+1]
                    method = 'Mueller'
                if method not in methods:
                    methods.append(method)
            if filter2 == None:
                structfiles = sorted([d for d in os.listdir(os.getcwd()) if os.path.getsize(d)>0])
            else:
                structfiles = sorted([d for d in os.listdir(os.getcwd()) if '_'.join(d.split('_')[:2])==filter2 and os.path.getsize(d)>0])
            for structfile in structfiles:
                if useSym:
                    nops,IBZvolcut,nAtoms = copyData(structfile,data)
                if coloring == 'indiv':
                    if iplot < nplots -1:
                        color = cm.jet(1.*(iplot+1)/float(nplots))
                    else:
                        color = 'k'
                iplot += 1
                energies = []
                nKs = []
                lines = readfile(structfile)
                for line in lines:
                    nK = int(line.split('\t')[0])
                    if nK > maxNk: maxNk = nK
                    nKs.append(nK)
                    energies.append(-float(line.split('\t')[1].split('\r')[0]))
                nKs = array(nKs)
                energies = array(energies)
                nDone = len(energies)
                order = argsort(nKs)
                energies = energies[order]
                eref = energies[-1]#the last energy of each struct is that of the most kpoints
                nKs = sort(nKs)
                errs = abs(energies-eref)*1000 + 1e-4 #now in meV 
                struct = '_'.join(structfile.split('_')[:2])
                data[iplot]['ID'] = atom_method + struct
                data[iplot]['nAtoms'] = nAtoms
                if useSym:
                    data[iplot]['nops'] = nops
                    data[iplot]['IBZvolcut'] = IBZvolcut
                data[iplot]['nDone'] = len(energies)
                data[iplot]['eners'][:nDone] = energies
                data[iplot]['errs'][:nDone] = errs
                data[iplot]['nKs'][:nDone] = nKs
                data[iplot]['color'] = color
                data[iplot]['method'] = method
            os.chdir(extpath)
    nplots = iplot+1 
    
    lines = [' ID , nKIBZ , ener , err, nAtoms, nops,IBZcut\n']  
    for iplot in range(nplots):
        n = data[iplot]['nDone']
        for icalc in range(n):#data[iplot]['eners'][:n].tolist()
            lines.append('{}_n{},{},{:15.12f},{:15.12f},{},{},{}\n'.format(data[iplot]['ID'],\
              data[iplot]['ns'][icalc], data[iplot]['nKs'][icalc],\
              data[iplot]['eners'][icalc],data[iplot]['errs'][icalc],\
              data[iplot]['nAtoms'],data[iplot]['nops'],data[iplot]['IBZvolcut']))
    writefile(lines,'{}/summary.csv'.format(summaryPath)) 
       
    #plots
    if maxNk > 1:
        if filter[0] == '_':filter = '' #labels can't begin with _
#         plotTypes = ['linear','loglog', 'loglinear'];ylabels = ['Vasp error energy/atom (eV)','Error (meV)','Error (meV)']
        # print 'plot only loglog'
        plotTypes = ['loglog']; ylabels = ['Error (meV)']
    #     plotTypes = [] 
        
        xtext = 'N k-points'
        
        for it,plotType in enumerate(plotTypes):
            fig = figure()
            ax1 = fig.add_subplot(111)
            xlabel(xtext)
            ylabel(ylabels[it]) 
            # title('Convergence vs mesh method')
            #ylim((1e-12,1e0))
            oldmethod = '' 
            methods2 = []
            for iplot in range(nplots):
                labelStr = None
                n = data[iplot]['nDone']
                if coloring == 'method':  
                    method = data[iplot]['method'] 
                    data[iplot]['color'] = colorsList[methods.index(method)] 
                    if method != oldmethod and method not in methods2:
                        if doLabel: labelStr = '{} {}'.format(filter,data[iplot]['method'])
                        plotData(fig,summaryPath,data[iplot],n,plotType,filter,doLegend,labelStr)
                        oldmethod = method;labelStr = None
                        methods2.append(method)
                    else:
                        plotData(fig,summaryPath,data[iplot],n,plotType,filter,doLegend,labelStr)
                elif coloring == 'indiv': 
                    if doLabel: labelStr = '{} {}'.format(filter,data[iplot]['ID'])
                    plotData(data[iplot],n,plotType,filter,doLegend,labelStr)
        #Method averaging
        if coloring == 'method':
    #         print 'Averaging, plotting method errors'
            nbins = int(10*ceil(log10(maxNk)))# 10 bins per decade
            nKbins = array([(10.0**(1/10.0))**i for i in range(nbins)])
            fig = figure()
            ax1 = fig.add_subplot(111)
            xlabel('N k-points (smoothed by factor {})'.format(int(smoothFactor)))
            ylabel('Error (meV)') 
            methodCostsLogs = []
            for im,method in enumerate(methods):
                methnKmax = 0 
                binCounts = zeros(nbins,dtype = int32)
                binErrs = zeros(nbins,dtype = float)
                costLogs = zeros(nbins,dtype = float) # "Costs" relative to excellent Si Monkhorst Pack, which has err = 10^3/nK^3 + 10^-3 meV.         
                for iplot in range(nplots):
                    if data[iplot]['method'] == method:
                        for icalc in range(data[iplot]['nDone']-1):
                            nK = data[iplot]['nKs'][icalc]
                            if nK>methnKmax: methnKmax = nK
                            if nK>1:
                                for ibin in range(nbins):
                                    if abs(log10(nK/nKbins[ibin])) <= log10(smoothFactor)\
                                      and nKbins[ibin]<= maxNk:
                                        binErrs[ibin] += data[iplot]['errs'][icalc]
                                        costLogs[ibin] += log10(data[iplot]['errs'][icalc]/(10**3/(nK**3.0)+0.001))
                                        binCounts[ibin] += 1
                mask = where(binCounts>0)
                binErrs2 = binErrs[mask[0]]
                binCounts2 = binCounts[mask[0]]
                nKbins2 = nKbins[mask[0]]
                costLogs2 = costLogs[mask[0]]
                nbins2 = len(nKbins2)
                avgErrs = [binErrs2[ibin]/binCounts2[ibin] for ibin in range(nbins2)]
                avgcostLogs =  [costLogs2[ibin]/binCounts2[ibin] for ibin in range(nbins2)]
                avgcostLins = [10**avgcostLogs[ibin] for ibin in range(nbins2)]
                methodCostsLogs.append(mean(avgcostLogs))
                loglog(nKbins2,avgErrs,label = method,\
                      color = colorsList[im], marker = None)
                loglog(nKbins2,avgcostLins,label = None,\
                      color = colorsList[im], marker = None,linestyle=':')
        #         print 'Method',method, 'nKmax',methnKmax, 'avgLogCost', mean(avgcostLogs)
                legend(loc='lower left',prop={'size':12});
                fig.savefig('{}/methodErrs'.format(summaryPath))
            close('all')
    if maxNk > 1:  
        return [methodCostsLogs[0],mean(data['nDone'])] #there is only one method when running this routine
    else:
        return [100,0]
Пример #4
0
    #         plotErrs()
            data[iplot]['ID'] = '{} {}'.format(struct,meshMethod)
            nAtoms = getNatoms('{}/POSCAR'.format(calc))
            data[iplot]['nAtoms'] = nAtoms
            data[iplot]['nDone'] = nDone
            data[iplot]['eners'][:nDone] = energies
            data[iplot]['errs'][:nDone] = errs
            data[iplot]['nKs'][:nDone] = nKs
        os.chdir(maindir)
lines = [' ID , nKIBZ , ener , err, nAtoms \n']  
for iplot in range(nplots):
    n = data[iplot]['nDone']
    for icalc in range(n):#data[iplot]['eners'][:n].tolist()
        lines.append('{},{},{:15.12f},{:15.12f},{}\n'.format(data[iplot]['ID'], data[iplot]['nKs'][icalc],\
             data[iplot]['eners'][icalc],data[iplot]['errs'][icalc],data[iplot]['nAtoms']))  
writefile(lines,'{}/summary.csv'.format(summaryPath))   
fig = figure()
ax1 = fig.add_subplot(111)
#    ax1.set_color_cycle(['r','b','g','c', 'm', 'y', 'k'])
xlabel('N kpoints')
ylabel('Vasp energy/atom (eV)') 
title('Convergence vs mesh method')
#ylim((1e-12,1e0))
for iplot in range(nplots):
    if iplot < nplots -1:
        plotcolor = cm.jet(1.*(iplot+1)/float(nplots))
    else:
        plotcolor = 'k'
    n = data[iplot]['nDone']  
#     print 'iplot',data[iplot]['eners'][:n], data[iplot]['nKs'][:n]
    plot(data[iplot]['nKs'][:n],data[iplot]['eners'][:n],\
Пример #5
0
def analyze(
    paths
):  #as used with the parameter search, paths will have only one entry.  But keep consistent with interactive vaspoutCombineRunsExtData
    extpath = None
    useSym = False
    coloring = 'method'
    # coloring = 'indiv'
    doLegend = True
    doLabel = True
    smoothFactor = 2.0
    filter = '_'  #string must be in dir name to be included
    filter2 = None  #'Cu_1' #for single structures.  set to None if using filter1 only
    summaryPath = paths[0]
    #count the number of plots:
    iplot = 0
    maxCalcs = 0
    maxNk = 0
    methods = []
    for ipath, path in enumerate(paths):
        method = path.split('_')[-1].split('/')[0]
        methods.append(method)
        os.chdir(path)
        if filter2 == None:
            structs = sorted([
                d for d in os.listdir(os.getcwd())
                if os.path.isdir(d) and filter in d
            ])
        else:
            structs = sorted([
                d for d in os.listdir(os.getcwd())
                if os.path.isdir(d) and d == filter2
            ])
        for struct in structs:
            os.chdir(struct)
            iplot += 1
            calcs = sorted(
                [d for d in os.listdir(os.getcwd()) if os.path.isdir(d)])
            if len(calcs) > maxCalcs: maxCalcs = len(calcs)
            os.chdir(path)

    #external data is of the form extpath/atom_method/struct.csv.  The csv has energies vs nK
    if not extpath is None:
        os.chdir(extpath)
        atoms_methods = sorted([
            d for d in os.listdir(extpath) if os.path.isdir(d) and filter in d
        ])  # os.chdir(extpath)
        for atom_method in atoms_methods:
            atom = atom_method.split('_')[0]
            os.chdir(atom_method)
            os.system('rm -r .*lock*')
            for structfile in os.listdir(os.getcwd()):
                if atom not in structfile:
                    os.system('mv {} {}_{}'.format(
                        structfile, atom,
                        structfile))  #so that file has atom name at beginning
            if filter2 == None:
                structfiles = sorted([
                    d for d in os.listdir(os.getcwd())
                    if os.path.getsize(d) > 0
                ])
            else:
                structfiles = sorted([
                    d for d in os.listdir(os.getcwd())
                    if '_'.join(d.split('_')[:2]) == filter2
                    and os.path.getsize(d) > 0
                ])
            for structfile in structfiles:
                iplot += 1
                #count number of points in this structfile
                lines = readfile(structfile)
                if len(lines) > maxCalcs: maxCalcs = len(lines)
            os.chdir(extpath)

    nplots = iplot
    if nplots < len(paths): sys.exit('Stop.  Structures do not match filter')
    data = zeros(nplots,dtype = [('ID', 'S25'),('color', 'S15'),('method', 'S15'),\
                                 ('nDone','int32'),('nAtoms','int32'),('nops','int8'),\
                                 ('IBZvolcut','float'),('IBZvol','float'),\
                                 ('eners', '{}float'.format(maxCalcs)), ('errs', '{}float'.format(maxCalcs)),\
                                 ('nKs', '{}int16'.format(maxCalcs)),('ns', '{}int8'.format(maxCalcs))])
    # style.use('bmh')
    # for i, item in enumerate(rcParams['axes.prop_cycle']):
    #     colorsList.append(item['color'])
    style.use('fivethirtyeight')
    # for i, item in enumerate(rcParams['axes.prop_cycle'][:-2]):
    #     colorsList.append(item['color'])

    colorsList = [
        u'#30a2da', u'#fc4f30', u'#e5ae38', u'#6d904f', u'#8b8b8b', u'#348ABD',
        u'#A60628', u'#7A68A6', u'#467821', u'#D55E00', u'#CC79A7', u'#56B4E9',
        u'#009E73', u'#F0E442', u'#0072B2'
    ]

    colorsList = colorsList + ['b', 'm', 'y', 'c', 'k']
    rcParams.update({'figure.autolayout': True})
    rcParams['axes.facecolor'] = 'white'
    rcParams['axes.linewidth'] = 1.0
    rcParams['axes.edgecolor'] = 'black'  # axisbg=axescolor
    rcParams['savefig.facecolor'] = 'white'  # axisbg=axescolor
    rcParams['lines.markersize'] = 4.5
    #read all the data
    iplot = -1
    for ipath, path in enumerate(paths):  #my data
        tag = path.split('/')[-1][-7:]
        os.chdir(path)
        if filter2 == None:
            structs = sorted([
                d for d in os.listdir(os.getcwd())
                if os.path.isdir(d) and filter in d
            ])
        else:
            structs = sorted([
                d for d in os.listdir(os.getcwd())
                if os.path.isdir(d) and d == filter2
            ])
        nStructs = len(structs)
        #         print structs,path
        for istruct, struct in enumerate(structs):
            #         print 'test', istruct, struct
            #             print 'struct',struct
            os.chdir(struct)
            if coloring == 'indiv':
                #             if iplot < nplots -1:
                color = rgb2hex(cm.jet(1. * (iplot + 1) / float(nplots)))
    #             else:
    #                 color = 'k'
            elif coloring == 'method':
                #             color =  colorsList[ipath]
                color = None
            calcs = sorted([
                d for d in os.listdir(os.getcwd())
                if os.path.isdir(d) and os.path.exists('{}/OUTCAR'.format(d))
            ])
            energies = []
            nKs = []
            ns = []  #the base n of the run run
            nDone = 0
            if useSym:
                try:
                    nops, IBZvolcut, IBZvol = readSym(calcs[0])
                except:
                    sys.exit('Stopping. readSym failed. Set useSym to False')
            for calc in calcs:
                if electronicConvergeFinish(calc):
                    ener = getEnergy(calc)  #in energy/atom
                    if not areEqual(ener, 0, 1e-5):
                        nDone += 1
                        energies.append(ener)
                        if 'vc' in path:
                            nK = getNkIBZ(calc, 'KPOINTS')

                        else:
                            nK = getNkIBZ(calc, 'IBZKPT')
                        if nK > maxNk: maxNk = nK
                        nKs.append(nK)
                        ns.append(int(calc.split('_')[-1]))
            #sort by increasing number of kpoints
            if len(energies) > 0:
                iplot += 1
                nKs = array(nKs)
                energies = array(energies)
                ns = array(ns)
                order = argsort(nKs)
                #         print 'struct',struct
                #         print 'energies',energies
                energies = energies[order]
                ns = ns[order]
                nKs = sort(nKs)
                eref = energies[
                    -1]  #the last energy of each struct is that of the most kpoints
                errs = abs(energies - eref) * 1000 + 1e-4  #now in meV
                data[iplot]['ID'] = '{} {}'.format(struct, tag)
                nAtoms = getNatoms('{}/POSCAR'.format(calc))
                data[iplot]['nAtoms'] = nAtoms
                if useSym:
                    data[iplot]['nops'] = nops
                    data[iplot]['IBZvolcut'] = IBZvolcut
                data[iplot]['nDone'] = nDone
                data[iplot]['eners'][:nDone] = energies
                data[iplot]['errs'][:nDone] = errs
                data[iplot]['nKs'][:nDone] = nKs
                data[iplot]['ns'][:nDone] = ns
                data[iplot]['color'] = color
                method = path.split('_')[-1].split('/')[0]
                data[iplot]['method'] = method
            os.chdir(path)
    # os.chdir(extpath)
    if not extpath is None:
        os.chdir(extpath)
        #         print; print atoms_methods
        for atom_method in atoms_methods:
            os.chdir(atom_method)
            if coloring == 'method':
                color = None
                if 'MP' in atom_method:
                    #                 color = colorsList[len(paths)]
                    method = 'MP'

                elif 'Mueller' in atom_method:
                    #                 color = colorsList[len(paths)+1]
                    method = 'Mueller'
                if method not in methods:
                    methods.append(method)
            if filter2 == None:
                structfiles = sorted([
                    d for d in os.listdir(os.getcwd())
                    if os.path.getsize(d) > 0
                ])
            else:
                structfiles = sorted([
                    d for d in os.listdir(os.getcwd())
                    if '_'.join(d.split('_')[:2]) == filter2
                    and os.path.getsize(d) > 0
                ])
            for structfile in structfiles:
                if useSym:
                    nops, IBZvolcut, nAtoms = copyData(structfile, data)
                if coloring == 'indiv':
                    if iplot < nplots - 1:
                        color = cm.jet(1. * (iplot + 1) / float(nplots))
                    else:
                        color = 'k'
                iplot += 1
                energies = []
                nKs = []
                lines = readfile(structfile)
                for line in lines:
                    nK = int(line.split('\t')[0])
                    if nK > maxNk: maxNk = nK
                    nKs.append(nK)
                    energies.append(-float(line.split('\t')[1].split('\r')[0]))
                nKs = array(nKs)
                energies = array(energies)
                nDone = len(energies)
                order = argsort(nKs)
                energies = energies[order]
                eref = energies[
                    -1]  #the last energy of each struct is that of the most kpoints
                nKs = sort(nKs)
                errs = abs(energies - eref) * 1000 + 1e-4  #now in meV
                struct = '_'.join(structfile.split('_')[:2])
                data[iplot]['ID'] = atom_method + struct
                data[iplot]['nAtoms'] = nAtoms
                if useSym:
                    data[iplot]['nops'] = nops
                    data[iplot]['IBZvolcut'] = IBZvolcut
                data[iplot]['nDone'] = len(energies)
                data[iplot]['eners'][:nDone] = energies
                data[iplot]['errs'][:nDone] = errs
                data[iplot]['nKs'][:nDone] = nKs
                data[iplot]['color'] = color
                data[iplot]['method'] = method
            os.chdir(extpath)
    nplots = iplot + 1

    lines = [' ID , nKIBZ , ener , err, nAtoms, nops,IBZcut\n']
    for iplot in range(nplots):
        n = data[iplot]['nDone']
        for icalc in range(n):  #data[iplot]['eners'][:n].tolist()
            lines.append('{}_n{},{},{:15.12f},{:15.12f},{},{},{}\n'.format(data[iplot]['ID'],\
              data[iplot]['ns'][icalc], data[iplot]['nKs'][icalc],\
              data[iplot]['eners'][icalc],data[iplot]['errs'][icalc],\
              data[iplot]['nAtoms'],data[iplot]['nops'],data[iplot]['IBZvolcut']))
    writefile(lines, '{}/summary.csv'.format(summaryPath))

    #plots
    if maxNk > 1:
        if filter[0] == '_': filter = ''  #labels can't begin with _
        #         plotTypes = ['linear','loglog', 'loglinear'];ylabels = ['Vasp error energy/atom (eV)','Error (meV)','Error (meV)']
        # print 'plot only loglog'
        plotTypes = ['loglog']
        ylabels = ['Error (meV)']
        #     plotTypes = []

        xtext = 'N k-points'

        for it, plotType in enumerate(plotTypes):
            fig = figure()
            ax1 = fig.add_subplot(111)
            xlabel(xtext)
            ylabel(ylabels[it])
            # title('Convergence vs mesh method')
            #ylim((1e-12,1e0))
            oldmethod = ''
            methods2 = []
            for iplot in range(nplots):
                labelStr = None
                n = data[iplot]['nDone']
                if coloring == 'method':
                    method = data[iplot]['method']
                    data[iplot]['color'] = colorsList[methods.index(method)]
                    if method != oldmethod and method not in methods2:
                        if doLabel:
                            labelStr = '{} {}'.format(filter,
                                                      data[iplot]['method'])
                        plotData(fig, summaryPath, data[iplot], n, plotType,
                                 filter, doLegend, labelStr)
                        oldmethod = method
                        labelStr = None
                        methods2.append(method)
                    else:
                        plotData(fig, summaryPath, data[iplot], n, plotType,
                                 filter, doLegend, labelStr)
                elif coloring == 'indiv':
                    if doLabel:
                        labelStr = '{} {}'.format(filter, data[iplot]['ID'])
                    plotData(data[iplot], n, plotType, filter, doLegend,
                             labelStr)
        #Method averaging
        if coloring == 'method':
            #         print 'Averaging, plotting method errors'
            nbins = int(10 * ceil(log10(maxNk)))  # 10 bins per decade
            nKbins = array([(10.0**(1 / 10.0))**i for i in range(nbins)])
            fig = figure()
            ax1 = fig.add_subplot(111)
            xlabel('N k-points (smoothed by factor {})'.format(
                int(smoothFactor)))
            ylabel('Error (meV)')
            methodCostsLogs = []
            for im, method in enumerate(methods):
                methnKmax = 0
                binCounts = zeros(nbins, dtype=int32)
                binErrs = zeros(nbins, dtype=float)
                costLogs = zeros(
                    nbins, dtype=float
                )  # "Costs" relative to excellent Si Monkhorst Pack, which has err = 10^3/nK^3 + 10^-3 meV.
                for iplot in range(nplots):
                    if data[iplot]['method'] == method:
                        for icalc in range(data[iplot]['nDone'] - 1):
                            nK = data[iplot]['nKs'][icalc]
                            if nK > methnKmax: methnKmax = nK
                            if nK > 1:
                                for ibin in range(nbins):
                                    if abs(log10(nK/nKbins[ibin])) <= log10(smoothFactor)\
                                      and nKbins[ibin]<= maxNk:
                                        binErrs[ibin] += data[iplot]['errs'][
                                            icalc]
                                        costLogs[ibin] += log10(
                                            data[iplot]['errs'][icalc] /
                                            (10**3 / (nK**3.0) + 0.001))
                                        binCounts[ibin] += 1
                mask = where(binCounts > 0)
                binErrs2 = binErrs[mask[0]]
                binCounts2 = binCounts[mask[0]]
                nKbins2 = nKbins[mask[0]]
                costLogs2 = costLogs[mask[0]]
                nbins2 = len(nKbins2)
                avgErrs = [
                    binErrs2[ibin] / binCounts2[ibin] for ibin in range(nbins2)
                ]
                avgcostLogs = [
                    costLogs2[ibin] / binCounts2[ibin]
                    for ibin in range(nbins2)
                ]
                avgcostLins = [10**avgcostLogs[ibin] for ibin in range(nbins2)]
                methodCostsLogs.append(mean(avgcostLogs))
                loglog(nKbins2,avgErrs,label = method,\
                      color = colorsList[im], marker = None)
                loglog(nKbins2,avgcostLins,label = None,\
                      color = colorsList[im], marker = None,linestyle=':')
                #         print 'Method',method, 'nKmax',methnKmax, 'avgLogCost', mean(avgcostLogs)
                legend(loc='lower left', prop={'size': 12})
                fig.savefig('{}/methodErrs'.format(summaryPath))
            close('all')
    if maxNk > 1:
        return [methodCostsLogs[0], mean(data['nDone'])
                ]  #there is only one method when running this routine
    else:
        return [100, 0]
Пример #6
0
infile = dir + 'structures.holdout'
#infile = dir+'structures.in'
#outfile = dir+'structures.in'
outfile = dir + 'structures.holdout'
FEs = []
indices = []
lines = readfile(infile)

#Find maximum and min formation energies
for i, line in enumerate(lines):
    if 'FE' in line:
        energy = float(
            line.split()[line.split().index('FE') +
                         2].split(',')[0])  #FE = 1.2578,  etc.  remove any ","
        FEs.append(energy)
    if '#Energy' in line:
        indices.append(i)  #where label 'Energy' appeared
FEmax = amax(FEs)
FEmin = amin(FEs)
indices = array(indices)

#Write new Fes
for i in range(len(FEs)):
    lines[indices[i]] = '#Energy (scaled formation energy)' + '\n'
    lines[indices[i] + 1] = str(scaledFE(FEs[i], FEmax, FEmin)) + '\n'
writefile(lines, outfile)

print 'Number of structures with formation energies scaled', len(FEs)

print 'Done'
                os.chdir('../')
            os.chdir(extpath)
        if collateMeshMat:
            meshPlots.close()

nplots = iplot + 1

lines = [' ID , nKIBZ , ener , err, nAtoms, nops,IBZcut\n']
for iplot in range(nplots):
    n = data[iplot]['nDone']
    for icalc in range(n):  #data[iplot]['eners'][:n].tolist()
        lines.append('{},{},{:15.12f},{:15.12f},{},{},{}\n'.format(data[iplot]['ID'],\
          data[iplot]['nKs'][icalc],\
          data[iplot]['eners'][icalc],data[iplot]['errs'][icalc],\
          data[iplot]['nAtoms'],data[iplot]['nops'],data[iplot]['IBZvolcut']))
writefile(lines, '{}/summary.csv'.format(summaryPath))

#plots
if filter[0] == '_': filter = ''  #labels can't begin with _
# plotTypes = ['linear','loglog'] #loglinear
# print 'plot only loglog'
plotTypes = ['loglog']  #loglinear
# plotTypes = []
ylabels = ['Vasp energy/atom (eV)', 'Error (meV)', 'Error (meV)']
xtext = 'N k-points'

for it, plotType in enumerate(plotTypes):
    fig = figure()
    ax1 = fig.add_subplot(111)
    xlabel(xtext)
    ylabel(ylabels[it])
Пример #8
0
#    ebest = en_per_atom[argmax(ns)]
#    efbest = efermis[argmax(ns)]
    names2 = deepcopy(names); names = delete(names2,zerolist,axis=0)
    parts2 = deepcopy(parts); parts2 = delete(parts,zerolist,axis=0)
    parts3 = array([parts2[i]/dets[i] for i in range(len(dets))])
    
    ibestnew = nonzero(en_per_atom == ebest)[0][0]
    print 'New index for ebest', ibestnew
#    for plots
    err = abs(en_per_atom-ebest)+1e-9 #do these again with only the finished runs
    ef_err = abs(efermis - efbest)+1e-9
    #Write to file to simplify plotting for comparisons with other runs
    errlist = [str(ns[i])+'  '+str(err[i])+'\n' for i in range(len(ns))]
    print errlist
    writefile(errlist,'errlist_vs_n')

    #en_per_atom vs ns  
    titleadd = ''+ title_detail  
#    plotxy(ns,en_per_atom,'en_per_atom', titleadd + 'Vasp energy vs n (defines grid)','n','eV')
    
#    print ns
#    print err

    fig = figure()
    semilogy(ns,err,'ro')
    title(titleadd + ' Error vs n (defines grid)')
    xlabel('n')
    ylabel('error')
    fig.savefig('vary_n_log_err')