Пример #1
0
def process(args):
    """
    General procedure of analysis
        args - arguments from command line input
    """
    analyzer = Analyzer(args.workload_conf_file)
    if args.offline:
        process_offline_data(args, analyzer)
    else:
        strict = True if args.fense_type == 'gmm-strict' else False
        analyzer.build_model(args.util_file, args.metric_file,
                             args.thresh, strict, args.verbose)
def test_load_and_save():

    """
    Load, save and load again full and thin analyzer instances, and verify that content is identical.
    """
    base_dir = os.path.dirname(__file__)
    relative_data_dir = 'data/1_example'
    data_dir = os.path.join(base_dir, relative_data_dir)

    # ----------------------------
    # load and save full analyzer
    # ----------------------------

    # load analyzer
    analyzer_file = os.path.join(data_dir, 'analyzer_full.p')
    analyzer_full = Analyzer.load(analyzer_file)

    # save analyzer in temporary directory
    outupt_dir = os.path.join(data_dir, 'tmp_full')
    shutil.rmtree(outupt_dir, ignore_errors=True)  # delete existing temp dir

    # save instance with image dir
    output_file_full = os.path.join(outupt_dir, 'analyzer.p')
    analyzer_full.save(output_file_full, save_thin_instance=False, save_images_in_dir=True, image_name_template='{:08d}.png')

    # ----------------------------
    # load and save thin analyzer
    # ----------------------------
    analyzer_file = os.path.join(data_dir, 'analyzer_thin.p')
    analyzer_thin = Analyzer.load(analyzer_file, load_images_from_dir=True, sfx='png')  # use lossless png image, not jpg

    # save analyzer in temporary directory
    outupt_dir = os.path.join(data_dir, 'tmp_thin')
    shutil.rmtree(outupt_dir, ignore_errors=True)  # delete existing temp dir

    # save instance with image dir
    output_file_thin = os.path.join(outupt_dir, 'analyzer.p')
    analyzer_thin.save(output_file_thin, save_thin_instance=True, save_images_in_dir=True, image_name_template='{:08d}.png')  # use lossless png image, not jpg

    # ----------------------------------------------------------------
    # load analyzers from saved dirs and compare content thin analyzer
    # ----------------------------------------------------------------

    # load analyzers
    analyzer_full2 = Analyzer.load(output_file_full)
    analyzer_thin2 = Analyzer.load(output_file_thin, load_images_from_dir=True, sfx='png')  # use lossless png image, not jpg

    # compare content
    is_equal = compare_instances(analyzer_full2, analyzer_thin2)

    assert is_equal
Пример #3
0
def load_test_analyzer(data_dir='ILSVRC2015_00078000'):
    """
    Load analyzer object from saved test data.

    Parameters
    ----------
    data_dir : str, optional
        Data directory name, should be name of one of the folders inside analyze/tests/data/.

    Returns
    -------
    anaylzer : Analyzer
        Analyzer object.
    analyzer_root_dir : str
        Path of analyzer root directory, such that full images path is the concatenation of analyzer_root_dir and
        analyzer.data image_path.
    """

    # load reference analyzer
    base_dir = os.path.dirname(__file__)
    relative_data_dir = os.path.join('data', data_dir)
    data_dir = os.path.join(base_dir, relative_data_dir)
    analyzer_file = os.path.join(data_dir, 'analyzer.p')
    analyzer = Analyzer.load(analyzer_file, load_images_from_dir=False)
    analyzer_root_dir = os.path.join(base_dir, '..')

    return analyzer, analyzer_root_dir
Пример #4
0
def test_visualize_example():

    base_dir = os.path.dirname(__file__)
    relative_data_dir = 'data/ILSVRC2015_00078000'
    data_dir = os.path.join(base_dir, relative_data_dir)
    analyze_root_dir = os.path.abspath(os.path.join(base_dir, '..'))
    os.chdir(analyze_root_dir)

    # load analyzer
    analyzer_file = os.path.join(data_dir, 'analyzer.p')
    analyzer = Analyzer.load(analyzer_file, load_images_from_dir=True)

    # visualize example
    save_fig_path = os.path.join(base_dir, 'save_fig_example.png')
    frame_id = 40
    display = False  # True
    image = analyzer.visualize_example(key=frame_id,
                                       class_names=CLASS_NAMES,
                                       display=display,
                                       save_fig_path=save_fig_path)

    # compare to reference image
    image_ref_path = os.path.join(
        base_dir, 'data/visualizations/visualization_example.png')
    image_ref = cv2.imread(image_ref_path, cv2.IMREAD_UNCHANGED)

    is_close = np.isclose(image, image_ref,
                          atol=2)  # allow up to 2 gray level difference

    is_all_close = np.all(is_close)

    assert is_all_close
Пример #5
0
    def _test_message(self, message: Descriptor):
        table_resolver = TableResolver()
        analyzer = Analyzer(table_resolver)
        analyzer.generate_tables_for_file(self._create_file_with_message(message))

        result = list(table_resolver.tables)
        self.assertTrue(len(result) is 1)

        result_table: Table = result[0]

        # Sort the fields by name.
        def sorted_by_fields_name(fields):
            return fields.sort(key=lambda field: field.name)

        for table_field, message_field in zip(sorted_by_fields_name(result_table.fields),
                                              sorted_by_fields_name(message.fields)):
            self._test_field(table_field, message_field)
Пример #6
0
def test_empty_preds_gts():

    base_dir = os.path.dirname(__file__)
    relative_data_dir = 'data/ILSVRC2015_00078000'
    data_dir = os.path.join(base_dir, relative_data_dir)

    # load analyzer
    analyzer_file = os.path.join(data_dir, 'analyzer.p')
    analyzer = Analyzer.load(analyzer_file, load_images_from_dir=False)

    # initialize total confusion matrix
    num_classes = len(CLASS_NAMES)
    cm_total = np.zeros((num_classes + 1, num_classes + 1))

    # iterate over frames
    counter = 0
    for frame_id, item in analyzer.items():

        # unpack data
        prediction, ground_truth, image_path, image = analyzer.unpack_item(
            item)[0:4]

        if counter == 1:  # delete predictions
            prediction = Box([], image_shape=(100, 200))
        elif counter == 2:  # delete groud truths
            ground_truth = Box([], image_shape=(100, 200))
        elif counter == 3:  # delete image shape
            try:
                ground_truth = Box([], image_shape=None)
            except ValueError as e:
                cond3 = e.__repr__(
                ) == "ValueError('image_shape must be tuple of length 2 (height, width) or 3 (height, width, channels), got None',)"

        # calculate confusion matrix of current frame
        cm = ConfusionMatrix.calculate_confusion_matrix(prediction,
                                                        ground_truth,
                                                        CLASS_NAMES,
                                                        normalize=None,
                                                        score_th=0.3,
                                                        iou_th=0.5,
                                                        iou_criterion='all',
                                                        score_criterion='all',
                                                        display=False)

        if counter == 1:  # delete predictions
            cond1 = cm[:, -1].sum() == 3
        elif counter == 2:  # delete groud truths
            cond2 = cm[-1, :].sum() == 3

        # analyze cm

        # advance counter
        counter += 1

    # check conditions
    assert cond1
    assert cond2
    assert cond3
Пример #7
0
def test_analyzer_mutable_mapping_implementation():
    """
    Analyzer class inherits from collections.abc.MutableMapping, which demands implementation of
    several class methods such as __setitem__, __iter__, etc.
    Here we will check the correctness of these implementations.
    """

    # load analyzer
    base_dir = os.path.dirname(__file__)
    relative_data_dir = 'data/ILSVRC2015_00078000'
    data_dir = os.path.join(base_dir, relative_data_dir)
    analyzer_file = os.path.join(data_dir, 'analyzer.p')
    analyzer = Analyzer.load(analyzer_file, load_images_from_dir=False)

    analyzer2 = Analyzer()

    # check iteration
    for frame_id, item in analyzer.items():

        # check unpacking
        prediction, ground_truth, image_path, image = analyzer.unpack_item(
            item)[0:4]

        # check __setitem by assigning to second analyzer
        analyzer2[frame_id] = item

    # add attributes to analyzer2
    analyzer2.image_resize_factor = analyzer.image_resize_factor
    analyzer2.video_processor = analyzer.video_processor
    analyzer2.output_dir = analyzer.output_dir
    analyzer2.class_names = analyzer.class_names
    analyzer2.bbox_match_method = analyzer.bbox_match_method
    analyzer2.iou_th = analyzer.iou_th
    analyzer2.score_th = analyzer.score_th

    # compare 2 analyzers
    is_equal = compare_instances(analyzer, analyzer2)

    assert is_equal

    # check __delitem__
    keys = list(analyzer.keys())
    key_to_delete = keys[0]
    del analyzer[key_to_delete]
Пример #8
0
def test_initialize_with_simple_wrapper():

    base_dir = os.path.dirname(__file__)
    relative_data_dir = 'data/ILSVRC2015_00078000'
    data_dir = os.path.join(base_dir, relative_data_dir)

    # load analyzer
    analyzer_file = os.path.join(data_dir, 'analyzer.p')
    analyzer = Analyzer.load(analyzer_file, load_images_from_dir=False)

    # initialize total confusion matrix
    num_classes = len(CLASS_NAMES)
    cm_total = np.zeros((num_classes + 1, num_classes + 1))
Пример #9
0
def generate_report():

    # load reference analyzer
    base_dir = os.path.dirname(__file__)
    relative_data_dir = '../tests/data/ILSVRC2015_00078000'
    data_dir = os.path.join(base_dir, relative_data_dir)
    analyzer_file = os.path.join(data_dir, 'analyzer.p')
    analyzer = Analyzer.load(analyzer_file, load_images_from_dir=False)

    # set output directory
    analyzer.output_dir = os.path.join(base_dir, 'output', 'generate_report')
    os.makedirs(analyzer.output_dir, exist_ok=True)

    # generate report
    analyzer.evaluate_performance(generate_report=True)

    pass
Пример #10
0
def main():
    # Read request message from stdin
    data = sys.stdin.buffer.read()

    # Parse request
    request = plugin.CodeGeneratorRequest()
    request.ParseFromString(data)

    # Create response
    response = plugin.CodeGeneratorResponse()

    # TODO: clean this part.
    # Generate code
    table_resolver = TableResolver()
    analyzer = Analyzer(table_resolver)

    pool = DescriptorPool()

    for proto_file in request.proto_file:
        pool.Add(proto_file)

        analyzer.generate_tables_for_file(
            file_descriptor=pool.FindFileByName(proto_file.name))

    analyzer.link_tables_references()

    writer = ProtoPluginResponseWriter()
    writer.write(generator=KotlinExposedGenerator(),
                 tables=table_resolver.tables,
                 plugin_response=response)

    # Serialise response message
    output = response.SerializeToString()

    # Write to stdout
    sys.stdout.buffer.write(output)
Пример #11
0
    response = urllib2.urlopen(req, json.dumps(analyzedDict))
    html = response.read()
    html = json.loads(html)
    print "Success!\n"
    print "Result:"
    for key, value in html.iteritems():
        if isinstance(value, dict):
            print str(key)+":"
            for key2, value2 in value.iteritems():
                print "     "+str(key2)+": "+str(value2)
        else:
            print str(key)+": "+str(value)


if __name__ == "__main__":
    directory = "../device/data/analyze/"
    analyzer = Analyzer(directory)
    while True:
        if filesAvailable(directory):
            print "\nNew files are available.\nWaiting for all data..."
            sleep(2)
            print "Data received.\nStart analyzing..."
            analyzedDict = analyzer.analyze()
            print "Data analyzed.\nStart posting..."
            postData(analyzedDict)
        sleep(5)



Пример #12
0
import os

from analyze.analyzer import Analyzer
from analyze.viewer import AnalyzerViewer

if __name__ == '__main__':

    import os
    import panel as pn
    pn.extension()

    # load analyzer

    base_dir = os.path.dirname(__file__)
    relative_data_dir = '../tests/data/ILSVRC2015_00078000'
    data_dir = os.path.join(base_dir, relative_data_dir)
    analyzer_file = os.path.join(data_dir, 'analyzer.p')
    analyzer = Analyzer.load(analyzer_file, load_images_from_dir=False)
    os.chdir('..')  # go one level up

    # initialize viewer
    viewer = AnalyzerViewer(analyzer, resize_factor=2.)

    # view analyzer
    viewer.view()

    print('Done!')
Пример #13
0
def basic_usage_example():
    """
    Simulate inference loop by using saved analyzer.
    """

    # load reference analyzer
    analyzer_ref, analyze_root_dir = load_test_analyzer()
    base_dir = os.path.dirname(__file__)
    images_path = os.path.abspath(
        os.path.join(base_dir, '..', 'tests/data/ILSVRC2015_00078000/images'))

    # create new analyzer
    output_dir = os.path.join(base_dir, 'output', 'simple_usage_example')
    analyzer = Analyzer(
        output_dir=output_dir,
        output_video_name='video.avi',
        class_names=analyzer_ref.class_names,
        bbox_match_method='pred_bbox_center',
        score_th=0.25,
        iou_th=0.4,
    )

    # set output images format and directory
    output_images_dir = os.path.join(output_dir, 'images')
    os.makedirs(output_images_dir, exist_ok=True)
    output_image_format = 'jpg'  # png
    pattern_length = 8
    output_image_pattern = '%0{}d.{}'.format(pattern_length,
                                             output_image_format)
    images_with_boxes = []

    # simulate inference loop by iterating over data saved in analyzer_ref
    counter = 0
    for frame_id, item in analyzer_ref.items():

        # inference simulation
        prediction, ground_truth, image_path, image, _ = analyzer_ref.unpack_item(
            item)
        image_path = os.path.join(images_path, os.path.basename(image_path))

        # log results in analyzer
        # IMPORTANT:
        # in real usage of analyzer you will probably need to to some pre-processing to convert inference output to the
        # form that analyzer expects. mainly - convert predictions and ground_truth to bounding_box.Box().
        analyzer.update_analyzer(key=frame_id,
                                 prediction=prediction,
                                 ground_truth=ground_truth,
                                 image_path=image_path,
                                 analyze_performance=True)

        # optional: save visualizations
        image_out_path = os.path.join(output_images_dir,
                                      output_image_pattern % frame_id)
        image_with_boxes = analyzer.visualize_example(
            key=frame_id,
            image=image,
            show_predictions=True,
            show_ground_truth=True,
            class_names=analyzer_ref.class_names,
            rgb2bgr=False,
            display=False,
            save_fig_path=image_out_path,
        )

        # optional: save images with visualizations in a list - later will be used for video creation
        images_with_boxes.append(image_with_boxes)

        # optional: periodically save analyzer and video, can omit and save only at inference loop end
        if np.mod(counter, 20) == 0:
            analyzer.save(save_thin_instance=False, save_images_in_dir=True)
            analyzer.update_video(images_with_boxes)

        counter += 1

    # save final analyzer and video
    analyzer.save(save_thin_instance=True, save_images_in_dir=False)
    analyzer.update_video(images_with_boxes)

    # analyze full run - save performance report in output folder
    analyzer.evaluate_performance(generate_report=True)

    print('basic_usage_example - done!')
Пример #14
0
def test_confusion_matrix():

    base_dir = os.path.dirname(__file__)
    relative_data_dir = 'data/ILSVRC2015_00078000'
    data_dir = os.path.join(base_dir, relative_data_dir)

    # load analyzer
    analyzer_file = os.path.join(data_dir, 'analyzer.p')
    analyzer = Analyzer.load(analyzer_file, load_images_from_dir=False)

    # initialize total confusion matrix
    num_classes = len(CLASS_NAMES)
    cm_total = np.zeros((num_classes + 1, num_classes + 1))

    # iterate over frames
    for frame_id, item in analyzer.items():

        # unpack data
        prediction, ground_truth, image_path, image = analyzer.unpack_item(
            item)[0:4]

        # calculate confusion matrix of current frame
        cm = ConfusionMatrix.calculate_confusion_matrix(prediction,
                                                        ground_truth,
                                                        CLASS_NAMES,
                                                        normalize=None,
                                                        score_th=0.3,
                                                        iou_th=0.5,
                                                        iou_criterion='all',
                                                        score_criterion='all',
                                                        display=False)

        # analyze cm

        # add current cm to total cm
        cm_total += cm

    # analyze cm_total

    # normalize cm
    cm_total_norm = ConfusionMatrix.normalize_confusion_matrix(cm_total,
                                                               norm_type='gt')
    # save_fig_name = os.path.join(data_dir, 'analysis/confusion_matrix.png')
    # ConfusionMatrix.plot_confusion_matrix(cm_total_norm, display_labels=CLASS_NAMES, save_fig_name=save_fig_name, display=False)  # for display

    cm_total_ref = np.array([
        [
            0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
            0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.
        ],
        [
            0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
            0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.
        ],
        [
            0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
            0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.
        ],
        [
            0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
            0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.
        ],
        [
            0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
            0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.
        ],
        [
            0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
            0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.
        ],
        [
            0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
            0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.
        ],
        [
            0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
            0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.
        ],
        [
            0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
            0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.
        ],
        [
            0., 0., 0., 0., 0., 0., 0., 0., 0., 159., 0., 0., 0., 0., 0., 0.,
            0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 3.
        ],
        [
            0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
            0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.
        ],
        [
            0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
            0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.
        ],
        [
            0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
            0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.
        ],
        [
            0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
            0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.
        ],
        [
            0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
            0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.
        ],
        [
            0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
            0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.
        ],
        [
            0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
            0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.
        ],
        [
            0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
            0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.
        ],
        [
            0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
            0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.
        ],
        [
            0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
            0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.
        ],
        [
            0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
            0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.
        ],
        [
            0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
            0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.
        ],
        [
            0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
            0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.
        ],
        [
            0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
            0., 0., 0., 0., 0., 0., 37., 0., 0., 0., 0., 0., 0., 0., 30.
        ],
        [
            0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
            0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.
        ],
        [
            0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
            0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.
        ],
        [
            0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
            0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.
        ],
        [
            0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
            0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.
        ],
        [
            0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
            0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.
        ],
        [
            0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
            0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.
        ],
        [
            0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
            0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.
        ],
        [
            0., 0., 0., 0., 0., 0., 0., 11., 0., 11., 0., 0., 0., 0., 0., 0.,
            0., 0., 0., 0., 0., 0., 0., 11., 0., 0., 0., 0., 0., 0., 0., 0.
        ],
    ])

    is_equal_mat = cm_total_ref == cm_total
    is_equal = cm_total == pytest.approx(cm_total_ref)

    assert is_equal
Пример #15
0
def main():
    """ Script entry point. """
    ctx = Context()
    ctx.args = parse_arguments()
    ctx.cgroup_driver = detect_cgroup_driver()
    ctx.analyzer = Analyzer(ctx.args.workload_conf_file,
                            ctx.args.thresh_file)
    init_wlset(ctx)
    init_sysmax(ctx)

    if ctx.args.enable_prometheus:
        ctx.prometheus.start()

    if ctx.args.control:
        ctx.cpuq = CpuQuota(ctx.sysmax_util, ctx.args.margin_ratio,
                            ctx.args.verbose)
        quota_controller = NaiveController(ctx.cpuq, ctx.args.quota_cycles)
        ctx.llc = LlcOccup(Resource.BUGET_LEV_MIN, ctx.args.exclusive_cat)
        llc_controller = NaiveController(ctx.llc, ctx.args.llc_cycles)
        if ctx.args.disable_cat:
            ctx.llc = LlcOccup(Resource.BUGET_LEV_FULL, exclusive=False)
            ctx.controllers = {Contention.CPU_CYC: quota_controller}
        else:
            ctx.controllers = {Contention.CPU_CYC: quota_controller,
                               Contention.LLC: llc_controller}
    if ctx.args.record:
        cols = ['time', 'cid', 'name', Metric.UTIL]
        with open(Analyzer.UTIL_FILE, 'w') as utilf:
            utilf.write(','.join(cols) + '\n')

    threads = [Thread(target=monitor, args=(mon_util_cycle,
                                            ctx, ctx.args.util_interval))]

    if ctx.args.collect_metrics:
        if ctx.args.record:
            cols = ['time', 'cid', 'name', Metric.INST, Metric.CYC,
                    Metric.CPI, Metric.L3MPKI, Metric.L3MISS, Metric.NF,
                    Metric.UTIL, Metric.L3OCC, Metric.MBL, Metric.MBR,
                    Metric.L2STALL, Metric.MEMSTALL, Metric.L2SPKI,
                    Metric.MSPKI]
            with open(Analyzer.METRIC_FILE, 'w') as metricf:
                metricf.write(','.join(cols) + '\n')
        threads.append(Thread(target=monitor,
                              args=(mon_metric_cycle,
                                    ctx, ctx.args.metric_interval)))

    for thread in threads:
        thread.start()

    print('eris agent version', __version__, 'is started!')

    try:
        for thread in threads:
            thread.join()
    except KeyboardInterrupt:
        print('Shutdown eris agent ...exiting')
        ctx.shutdown = True
    except Exception:
        traceback.print_exc(file=sys.stdout)

    sys.exit(0)