def test_functional(self): vertices = ["M", "A", "Y"] di_edges = [("A", "M"), ("M", "Y")] bi_edges = [("A", "Y")] G = ADMG(vertices, di_edges, bi_edges) one_id = OneLineID(G, ['A'], ['Y']) functional = one_id.functional() self.assertEqual("ΣM ΦAY(p(V);G) ΦAM(p(V);G) ", functional)
def test_two_var_id_graph(self): vertices = ["A", "D", "C", "Y"] di_edges = [('D', 'Y'), ('D', 'A'), ('A', 'Y'), ('C', 'A'), ('C', 'Y')] bi_edges = [] G = ADMG(vertices, di_edges, bi_edges) one_id = OneLineID(G, ['A'], ['Y', 'D']) self.assertEqual({"C", "D", "Y"}, one_id.ystar) self.assertTrue(one_id.id())
def test_BMAY_graph(self): vertices = ["B", "M", "A", "Y"] di_edges = [("B", "M"), ("M", "A"), ("A", "Y")] bi_edges = [("B", "A"), ("B", "Y")] G = ADMG(vertices, di_edges, bi_edges) one_id = OneLineID(G, ["A"], ["Y"]) one_id.draw_swig() self.assertTrue(one_id.id())
def test_non_id_graph(self): """ Test that Y(a,b) is not identified """ # non ID test vertices = ['A', 'B', 'C', 'D', 'Y'] di_edges = [('A', 'B'), ('A', 'D'), ('B', 'C'), ('C', 'Y'), ('B', 'D'), ('D', 'Y')] bi_edges = [('A', 'C'), ('B', 'Y'), ('B', 'D')] G = ADMG(vertices, di_edges, bi_edges) one_id = OneLineID(G, ['A', 'B'], ['Y']) self.assertFalse(one_id.id())
def test_id_graph(self): """ Test that ADMG Y(a) is identified """ vertices = ['A', 'B', 'C', 'D', 'Y'] di_edges = [('A', 'B'), ('A', 'D'), ('B', 'C'), ('C', 'Y'), ('B', 'D'), ('D', 'Y')] bi_edges = [('A', 'C'), ('B', 'Y'), ('B', 'D')] G = ADMG(vertices, di_edges, bi_edges) one_id = OneLineID(G, ['A'], ['Y']) one_id.draw_swig() self.assertTrue(one_id.id()) self.assertEqual({'Y', 'C', 'D', 'B'}, one_id.ystar) one_id.export_intermediates()
def __init__(self, graph, treatment, outcome): """ Constructor. :param graph: ADMG corresponding to substantive knowledge/model. :param treatment: name of vertex corresponding to the treatment. :param outcome: name of vertex corresponding to the outcome. """ self.graph = copy.deepcopy(graph) self.treatment = treatment self.outcome = outcome self.strategy = None self.is_mb_shielded = self.graph.mb_shielded() # a dictionary of names for available estimators self.estimators = { "ipw": self._ipw, "gformula": self._gformula, "aipw": self._aipw, "eff-aipw": self._eff_augmented_ipw, "p-ipw": self._primal_ipw, "d-ipw": self._dual_ipw, "apipw": self._augmented_primal_ipw, "eff-apipw": self._eff_augmented_primal_ipw, "n-ipw": self._nested_ipw, "anipw": self._augmented_nested_ipw } # a dictionary of names for available modeling strategies self.models = { "glm-binary": self._fit_binary_glm, "glm-continuous": self._fit_continuous_glm } # check if the query is ID self.one_id = OneLineID(graph, [treatment], [outcome]) # check the fixability criteria for the treatment if len( self.graph.district(treatment).intersection( self.graph.descendants([treatment]))) == 1: self.strategy = "a-fixable" if self.is_mb_shielded: print( "\n Treatment is a-fixable and graph is mb-shielded. \n\n Available estimators are:\n \n" + "1. IPW (ipw)\n" + "2. Outcome regression (gformula)\n" + "3. Generalized AIPW (aipw)\n" + "4. Efficient Generalized AIPW (eff-aipw) \n \n" + "Suggested estimator is Efficient Generalized AIPW \n") else: print( "\n Treatment is a-fixable.\n\n Available estimators are :\n \n" + "1. IPW (ipw)\n" + "2. Outcome regression (gformula)\n" + "3. Generalized AIPW (aipw)\n \n" + "Suggested estimator is Generalized AIPW \n") elif len( self.graph.district(treatment).intersection( self.graph.children([treatment]))) == 0: self.strategy = "p-fixable" if self.is_mb_shielded: print( "\n Treatment is p-fixable and graph is mb-shielded. \n\n Available estimators are:\n\n" + "1. Primal IPW (p-ipw)\n" + "2. Dual IPW (d-ipw)\n" + "3. APIPW (apipw)\n" + "4. Efficient APIPW (eff-apipw) \n \n" + "Suggested estimator is Efficient APIPW \n") else: print( "\n Treatment is p-fixable. \n\n Available estimators are:\n \n" + "1. Primal IPW (p-ipw)\n" + "2. Dual IPW (d-ipw)\n" + "3. APIPW (apipw) \n\n" + "Suggested estimator is APIPW \n") elif self.one_id.id(): self.strategy = "nested-fixable" print("\n Effect is identified. \n \n Available estimators:\n \n" + "1. Nested IPW (n-ipw)\n" + "2. Augmented NIPW (anipw) \n\n" + "Suggested estimator is Augmented NIPW \n") else: self.strategy = "Not ID" print("Effect is not identified! \n") # finally, fix a valid topological order for estimation queries self.p_order = self._find_valid_order( "p-fixable") # used for a-fixable/p-fixable strategies self.n_order = self._find_valid_order( "nested-fixable") # used for nested-fixable strategies self.state_space_map_ = { } # maps from variable names to state space of the variable (binary/continuous)
class CausalEffect: """ Provides an interface to various estimation strategies for the ACE: E[Y(1) - Y(0)]. """ def __init__(self, graph, treatment, outcome): """ Constructor. :param graph: ADMG corresponding to substantive knowledge/model. :param treatment: name of vertex corresponding to the treatment. :param outcome: name of vertex corresponding to the outcome. """ self.graph = copy.deepcopy(graph) self.treatment = treatment self.outcome = outcome self.strategy = None self.is_mb_shielded = self.graph.mb_shielded() # a dictionary of names for available estimators self.estimators = { "ipw": self._ipw, "gformula": self._gformula, "aipw": self._aipw, "eff-aipw": self._eff_augmented_ipw, "p-ipw": self._primal_ipw, "d-ipw": self._dual_ipw, "apipw": self._augmented_primal_ipw, "eff-apipw": self._eff_augmented_primal_ipw, "n-ipw": self._nested_ipw, "anipw": self._augmented_nested_ipw } # a dictionary of names for available modeling strategies self.models = { "glm-binary": self._fit_binary_glm, "glm-continuous": self._fit_continuous_glm } # check if the query is ID self.one_id = OneLineID(graph, [treatment], [outcome]) # check the fixability criteria for the treatment if len( self.graph.district(treatment).intersection( self.graph.descendants([treatment]))) == 1: self.strategy = "a-fixable" if self.is_mb_shielded: print( "\n Treatment is a-fixable and graph is mb-shielded. \n\n Available estimators are:\n \n" + "1. IPW (ipw)\n" + "2. Outcome regression (gformula)\n" + "3. Generalized AIPW (aipw)\n" + "4. Efficient Generalized AIPW (eff-aipw) \n \n" + "Suggested estimator is Efficient Generalized AIPW \n") else: print( "\n Treatment is a-fixable.\n\n Available estimators are :\n \n" + "1. IPW (ipw)\n" + "2. Outcome regression (gformula)\n" + "3. Generalized AIPW (aipw)\n \n" + "Suggested estimator is Generalized AIPW \n") elif len( self.graph.district(treatment).intersection( self.graph.children([treatment]))) == 0: self.strategy = "p-fixable" if self.is_mb_shielded: print( "\n Treatment is p-fixable and graph is mb-shielded. \n\n Available estimators are:\n\n" + "1. Primal IPW (p-ipw)\n" + "2. Dual IPW (d-ipw)\n" + "3. APIPW (apipw)\n" + "4. Efficient APIPW (eff-apipw) \n \n" + "Suggested estimator is Efficient APIPW \n") else: print( "\n Treatment is p-fixable. \n\n Available estimators are:\n \n" + "1. Primal IPW (p-ipw)\n" + "2. Dual IPW (d-ipw)\n" + "3. APIPW (apipw) \n\n" + "Suggested estimator is APIPW \n") elif self.one_id.id(): self.strategy = "nested-fixable" print("\n Effect is identified. \n \n Available estimators:\n \n" + "1. Nested IPW (n-ipw)\n" + "2. Augmented NIPW (anipw) \n\n" + "Suggested estimator is Augmented NIPW \n") else: self.strategy = "Not ID" print("Effect is not identified! \n") # finally, fix a valid topological order for estimation queries self.p_order = self._find_valid_order( "p-fixable") # used for a-fixable/p-fixable strategies self.n_order = self._find_valid_order( "nested-fixable") # used for nested-fixable strategies self.state_space_map_ = { } # maps from variable names to state space of the variable (binary/continuous) def _find_valid_order(self, order_type): """ Utility function to find a valid order that satisfies the requirements in Semiparametric Inference (Bhattacharya, Nabi, & Shpitser 2020) paper. :param order_type: string specifying if the topological order is required for p-fixable or n-fixable problems. :return: list corresponding to a valid topological order. """ # if we are a-fixing or p-fixing, just ensure that the # treatment appears after all its non-descendants if order_type != "nested-fixable": focal_vertices = {self.treatment} # otherwise we ensure the vertices in Y* that intersect with district # of the treatment appear after all their non-descendants else: focal_vertices = self.one_id.ystar.intersection( self.graph.district(self.treatment)) # perform a sort on the nondescendants first nondescendants = set( self.graph.vertices) - self.graph.descendants(focal_vertices) order = self.graph.subgraph(nondescendants).topological_sort() # then sort the focal vertices and its descendants order += self.graph.subgraph( self.graph.descendants(focal_vertices)).topological_sort() return order def _fit_binary_glm(self, data, formula, weights=None): """ Fit a binary GLM to data given a formula. :param data: pandas data frame containing the data. :param formula: string encoding an R-style formula e.g: Y ~ X1 + X2. :return: the fitted model. """ return sm.GLM.from_formula(formula, data=data, family=sm.families.Binomial(), freq_weights=weights).fit() def _fit_continuous_glm(self, data, formula, weights=None): """ Fit a linear GLM to data given a formula. :param data: pandas data frame containing the data. :param formula: string encoding an R-style formula: e.g. Y ~ X1 + X2. :return: the fitted model. """ return sm.GLM.from_formula(formula, data=data, family=sm.families.Gaussian(), freq_weights=weights).fit() def _ipw(self, data, assignment, model_binary=None, model_continuous=None): """ IPW estimator for the counterfactual mean E[Y(t)]. :param data: pandas data frame containing the data. :param assignment: assignment value for treatment. :param model_binary: string specifying modeling strategy to use for propensity score: e.g. glm-binary. :param model_continuous: this argument is ignored for IPW. :return: float corresponding to computed E[Y(t)]. """ # pedantic checks to make sure the method returns valid estimates if self.strategy != "a-fixable": raise RuntimeError( "IPW will not return valid estimates as treatment is not a-fixable" ) # extract outcome from data frame and compute Markov pillow of treatment Y = data[self.outcome] mp_T = self.graph.markov_pillow([self.treatment], self.p_order) if len(mp_T) != 0: # fit T | mp(T) and compute probability of treatment for each sample formula = self.treatment + " ~ " + '+'.join(mp_T) # + "+ ones" model = model_binary(data, formula) prob_T = model.predict(data) else: prob_T = np.ones(len(data)) * np.mean(data[self.treatment]) indices_T0 = data.index[data[self.treatment] == 0] prob_T[indices_T0] = 1 - prob_T[indices_T0] # compute IPW estimate indices = data[self.treatment] == assignment return np.mean((indices / prob_T) * Y) def _gformula(self, data, assignment, model_binary=None, model_continuous=None): """ Outcome regression estimator for the counterfactual mean E[Y(t)]. :param data: pandas data frame containing the data. :param assignment: assignment value for treatment. :param model_binary: string specifying modeling strategy to use for binary variables: e.g. glm-binary. :param model_continuous: string specifying modeling strategy to use for outcome regression: e.g. glm-continuous. :return: float corresponding to computed E[Y(t)]. """ # pedantic checks to make sure the method returns valid estimates if self.strategy != "a-fixable": raise RuntimeError( "g-formula will not return valid estimates as treatment is not a-fixable" ) # create a dataset where T=t data_assign = data.copy() data_assign[self.treatment] = assignment # fit Y | T=t, mp(T) mp_T = self.graph.markov_pillow([self.treatment], self.p_order) if len(mp_T) != 0: formula = self.outcome + " ~ " + self.treatment + '+' + '+'.join( mp_T) # predict outcome appropriately depending on binary vs continuous else: formula = self.outcome + " ~ " + self.treatment if self.state_space_map_[self.outcome] == "binary": model = model_binary(data, formula) else: model = model_continuous(data, formula) return np.mean(model.predict(data_assign)) def _aipw(self, data, assignment, model_binary=None, model_continuous=None): """ Augmented IPW estimator for the counterfactual mean E[Y(t)]. :param data: pandas data frame containing the data. :param assignment: assignment value for treatment. :param model_binary: string specifying modeling strategy to use for binary variables: e.g. glm-binary. :param model_continuous: string specifying modeling strategy to use for continuous variables: e.g. glm-continuous. :return: float corresponding to computed E[Y(t)]. """ # pedantic checks to make sure the method returns valid estimates if self.strategy != "a-fixable": raise RuntimeError( "Augmented IPW will not return valid estimates as treatment is not a-fixable" ) # extract the outcome and get Markov pillow of the treatment Y = data[self.outcome] mp_T = self.graph.markov_pillow([self.treatment], self.p_order) if len(mp_T) != 0: # fit T | mp(T) and predict treatment probabilities formula_T = self.treatment + " ~ " + '+'.join(mp_T) #+ "+ ones" model = model_binary(data, formula_T) prob_T = model.predict(data) formula_Y = self.outcome + " ~ " + self.treatment + '+' + '+'.join( mp_T) else: prob_T = np.ones(len(data)) * np.mean(data[self.treatment]) formula_Y = self.outcome + " ~ " + self.treatment indices_T0 = data.index[data[self.treatment] == 0] prob_T[indices_T0] = 1 - prob_T[indices_T0] indices = data[self.treatment] == assignment # fit Y | T=t, mp(T) and predict outcomes under assignment T=t data_assign = data.copy() data_assign[self.treatment] = assignment if self.state_space_map_[self.outcome] == "binary": model = model_binary(data, formula_Y) else: model = model_continuous(data, formula_Y) Yhat_vec = model.predict(data_assign) # return AIPW estimate return np.mean((indices / prob_T) * (Y - Yhat_vec) + Yhat_vec) def _eff_augmented_ipw(self, data, assignment, model_binary=None, model_continuous=None): """ Efficient augmented IPW estimator for the counterfactual mean E[Y(t)]. :param data: pandas data frame containing the data. :param assignment: assignment value for treatment. :param model_binary: string specifying modeling strategy to use for binary variables: e.g. glm-binary. :param model_continuous: string specifying modeling strategy to use for continuous variables: e.g. glm-continuous. :return: float corresponding to computed E[Y(t)]. """ # pedantic checks to make sure the method returns valid estimates if self.strategy != "a-fixable": raise RuntimeError( "Augmented IPW will not return valid estimates as treatment is not a-fixable" ) if not self.is_mb_shielded: raise RuntimeError( "EIF will not return valid estimates as graph is not mb-shielded" ) # extract the outcome and get Markov pillow of treatment Y = data[self.outcome] mp_T = self.graph.markov_pillow([self.treatment], self.p_order) # fit T | mp(T) and compute treatment probabilities if len(mp_T) != 0: formula = self.treatment + " ~ " + '+'.join(mp_T) #+ "+ ones" model = model_binary(data, formula) prob_T = model.predict(data) else: prob_T = np.ones(len(data)) * np.mean(data[self.treatment]) indices_T0 = data.index[data[self.treatment] == 0] prob_T[indices_T0] = 1 - prob_T[indices_T0] indices = data[self.treatment] == assignment # compute the primal estimates that we use to compute projections primal = (indices / prob_T) * Y data["primal"] = primal eif_vec = 0 # get the variables that are actually involved in the efficient influence function # TODO: prune extra variables eif_vars = [V for V in self.graph.vertices] eif_vars.remove(self.treatment) # iterate over variables for V in eif_vars: # get the Markov pillow of the variable mpV = self.graph.markov_pillow([V], self.p_order) # compute E[primal | mp(V)] formula = "primal ~ " + '+'.join(mpV) # special case if mp(V) is empty, then E[primal | mp(V)] = E[primal] if len(mpV) != 0: model_mpV = model_continuous( data, formula) # primal is a continuous r.v. primal_mpV = model_mpV.predict(data) else: primal_mpV = np.mean(primal) # compute E[primal | V, mp(V)] formula = formula + "+" + V model_VmpV = model_continuous(data, formula) primal_VmpV = model_VmpV.predict(data) # add contribution of current variable: E[primal | V, mp(V)] - E[primal | mp(V)] eif_vec += primal_VmpV - primal_mpV # re-add the primal so final result is not mean zero eif_vec = eif_vec + np.mean(primal) # return efficient AIPW estimate return np.mean(eif_vec) def _beta_primal(self, data, assignment, model_binary=None, model_continuous=None): """ Utility function to compute primal estimates for a dataset. :param data: pandas data frame containing the data. :param assignment: assignment value for treatment. :param model_binary: string specifying modeling strategy to use for binary variables: e.g. glm-binary. :param model_continuous: string specifying modeling strategy to use for continuous variables: e.g. glm-continuous. :return: numpy array of floats corresponding to primal estimates for each sample. """ # extract the outcome Y = data[self.outcome] # C := pre-treatment vars and L := post-treatment vars in district of treatment C = self.graph.pre([self.treatment], self.p_order) post = set(self.graph.vertices).difference(C) L = post.intersection(self.graph.district(self.treatment)) # create copies of the data with treatment assignments T=0 and T=1 data_T1 = data.copy() data_T1[self.treatment] = 1 data_T0 = data.copy() data_T0[self.treatment] = 0 indices = data[self.treatment] == assignment # prob: stores \prod_{Li in L} p(Li | mp(Li)) # prob_T1: stores \prod_{Li in L} p(Li | mp(Li)) at T=1 # prob_T0: stores \prod_{Li in L} p(Li | mp(Li)) at T=0 mp_T = self.graph.markov_pillow([self.treatment], self.p_order) indices_T0 = data.index[data[self.treatment] == 0] if len(mp_T) != 0: formula = self.treatment + " ~ " + '+'.join(mp_T) model = model_binary(data, formula) prob = model.predict(data) prob[indices_T0] = 1 - prob[indices_T0] prob_T1 = model.predict(data) prob_T0 = 1 - prob_T1 else: prob = np.ones(len(data)) * np.mean(data[self.treatment]) prob[indices_T0] = 1 - prob[indices_T0] prob_T1 = np.ones(len(data)) * np.mean(data[self.treatment]) prob_T0 = 1 - prob_T1 # iterate over vertices in L (except the outcome) for V in L.difference([self.treatment, self.outcome]): # fit V | mp(V) mp_V = self.graph.markov_pillow([V], self.p_order) formula = V + " ~ " + '+'.join(mp_V) # p(V =v | .), p(V = v | . , T=1), p(V = v | ., T=0) if self.state_space_map_[V] == "binary": model = model_binary(data, formula) prob_V = model.predict(data) prob_V_T1 = model.predict(data_T1) prob_V_T0 = model.predict(data_T0) indices_V0 = data.index[data[V] == 0] # p(V | .), p(V | ., T=t) prob_V[indices_V0] = 1 - prob_V[indices_V0] prob_V_T1[indices_V0] = 1 - prob_V_T1[indices_V0] prob_V_T0[indices_V0] = 1 - prob_V_T0[indices_V0] else: model = model_continuous(data, formula) E_V = model.predict(data) E_V_T1 = model.predict(data_T1) E_V_T0 = model.predict(data_T0) std = np.std(data[V] - E_V) prob_V = norm.pdf(data[V], loc=E_V, scale=std) prob_V_T1 = norm.pdf(data[V], loc=E_V_T1, scale=std) prob_V_T0 = norm.pdf(data[V], loc=E_V_T0, scale=std) prob *= prob_V prob_T1 *= prob_V_T1 prob_T0 *= prob_V_T0 # special case when the outcome is in L if self.outcome in L: # fit a binary/continuous model for Y | mp(Y) mp_Y = self.graph.markov_pillow([self.outcome], self.p_order) formula = self.outcome + " ~ " + '+'.join(mp_Y) if self.state_space_map_[self.outcome] == "binary": model = model_binary(data, formula) else: model = model_continuous(data, formula) # predict the outcome and adjust numerator of primal accordingly Yhat_T1 = model.predict(data_T1) Yhat_T0 = model.predict(data_T0) prob_sumT = prob_T1 * Yhat_T1 + prob_T0 * Yhat_T0 beta_primal = indices * (prob_sumT / prob) else: prob_sumT = prob_T1 + prob_T0 beta_primal = indices * (prob_sumT / prob) * Y return beta_primal def _primal_ipw(self, data, assignment, model_binary=None, model_continuous=None): """ Primal IPW estimator for the counterfactual mean E[Y(t)]. :param data: pandas data frame containing the data. :param assignment: assignment value for treatment. :param model_binary: string specifying modeling strategy to use for binary variables: e.g. glm-binary. :param model_continuous: string specifying modeling strategy to use for continuous variables: e.g. glm-continuous. :return: float corresponding to computed E[Y(t)]. """ # pedantic checks to make sure the method returns valid estimates if self.strategy != "p-fixable" and self.strategy != "a-fixable": raise RuntimeError( "Primal IPW will not return valid estimates as treatment is not p-fixable" ) # return primal IPW estimate return np.mean( self._beta_primal(data, assignment, model_binary, model_continuous)) def _beta_dual(self, data, assignment, model_binary=None, model_continuous=None): """ Utility function to compute dual estimates for a dataset. :param data: pandas data frame containing the data. :param assignment: assignment value for treatment. :param model_binary: string specifying modeling strategy to use for binary variables: e.g. glm-binary. :param model_continuous: string specifying modeling strategy to use for continuous variables: e.g. glm-continuous. :return: numpy array of floats corresponding to dual estimates for each sample. """ # extract the outcome Y = data[self.outcome] # M := inverse Markov pillow of the treatment M = set([ m for m in self.graph.vertices if self.treatment in self.graph.markov_pillow([m], self.p_order) ]) M = M.difference(self.graph.district(self.treatment)) # create a dataset where T=t data_assigned = data.copy() data_assigned[self.treatment] = assignment prob = 1 # stores \prod_{Mi in M} p(Mi | mp(Mi))|T=t / p(Mi | mp(Mi)) for V in M.difference([self.outcome]): # Fit V | mp(V) mp_V = self.graph.markov_pillow([V], self.p_order) formula = V + " ~ " + '+'.join(mp_V) # p(V = 1 | .), p(V = 1 | . , T=assigned) if self.state_space_map_[V] == "binary": model = model_binary(data, formula) prob_V = model.predict(data) prob_V_assigned = model.predict(data_assigned) indices_V0 = data.index[data[V] == 0] # p(V | .) and p(V | ., T=assignment) prob_V[indices_V0] = 1 - prob_V[indices_V0] prob_V_assigned[indices_V0] = 1 - prob_V_assigned[indices_V0] else: model = model_continuous(data, formula) E_V = model.predict(data) E_V_assigned = model.predict(data_assigned) std = np.std(data[V] - E_V) prob_V = norm.pdf(data[V], loc=E_V, scale=std) prob_V_assigned = norm.pdf(data[V], loc=E_V_assigned, scale=std) prob *= prob_V_assigned / prob_V # special case for if the outcome is in M if self.outcome in M: mp_Y = self.graph.markov_pillow([self.outcome], self.p_order) formula = self.outcome + " ~ " + '+'.join(mp_Y) if self.state_space_map_[self.outcome] == "binary": model = model_binary(data, formula) else: model = model_continuous(data, formula) Yhat_assigned = model.predict(data_assigned) else: Yhat_assigned = Y return prob * Yhat_assigned def _dual_ipw(self, data, assignment, model_binary=None, model_continuous=None): """ Dual IPW estimator for the counterfactual mean E[Y(t)]. :param data: pandas data frame containing the data. :param assignment: assignment value for treatment. :param model_binary: string specifying modeling strategy to use for binary variables: e.g. glm-binary. :param model_continuous: string specifying modeling strategy to use for continuous variables: e.g. glm-continuous. :return: float corresponding to computed E[Y(t)]. """ # pedantic checks to make sure the method returns valid estimates if self.strategy != "p-fixable" and self.strategy != "a-fixable": raise RuntimeError( "Dual IPW will not return valid estimates as treatment is not p-fixable" ) # return primal dual IPW estimate return np.mean( self._beta_dual(data, assignment, model_binary, model_continuous)) def _augmented_primal_ipw(self, data, assignment, model_binary=None, model_continuous=None): """ Augmented primal IPW estimator for the counterfactual mean E[Y(t)]. :param data: pandas data frame containing the data. :param assignment: assignment value for treatment. :param model_binary: string specifying modeling strategy to use for binary variables: e.g. glm-binary. :param model_continuous: string specifying modeling strategy to use for continuous variables: e.g. glm-continuous. :return: float corresponding to computed E[Y(t)]. """ # pedantic checks to make sure the method returns valid estimates if self.strategy != "p-fixable" and self.strategy != "a-fixable": raise RuntimeError( "Augmented primal IPW will not return valid estimates as treatment is not p-fixable" ) # compute the primal and dual estimates and them to the data frame beta_primal = self._beta_primal(data, assignment, model_binary, model_continuous) beta_dual = self._beta_dual(data, assignment, model_binary, model_continuous) data["beta_primal"] = beta_primal data["beta_dual"] = beta_dual # C := pre-treatment vars # L := post-treatment vars in the district of T # M := post treatment vars not in L (a.k.a. the rest) C = self.graph.pre([self.treatment], self.p_order) post = set(self.graph.vertices).difference(C) L = post.intersection(self.graph.district(self.treatment)) M = post - L IF = 0 # iterate over all post-treatment variables for V in post: # compute all predecessors according to the topological order pre_V = self.graph.pre([V], self.p_order) # if the variables is in M, project using the primal otherwise use the dual # to fit E[beta | pre(V)] if V in M: formula = "beta_primal" + " ~ " + '+'.join(pre_V) elif V in L: formula = "beta_dual" + " ~ " + '+'.join(pre_V) # special logic for if there are no predecessors for the variable (which could only happen to T) if len(pre_V) != 0: model_preV = model_continuous( data, formula) # primal/dual is a continuous r.v. pred_preV = model_preV.predict(data) else: pred_preV = 0 # fit E[beta | V, pre(V)] formula = formula + " + " + V model_VpreV = model_continuous(data, formula) pred_VpreV = model_VpreV.predict(data) # add contribution of current variable as E[beta | V, pre(V)] - E[beta | pre(V)] IF += pred_VpreV - pred_preV # final contribution from E[beta | C] (if C is not empty) if len(C) != 0: formula = "beta_dual" + " ~ " + '+'.join(C) model_C = model_continuous(data, formula) # dual is a continuous r.v. IF += model_C.predict(data) # return APIPW estimate return np.mean(IF) def _eff_augmented_primal_ipw(self, data, assignment, model_binary=None, model_continuous=None): """ Efficient augmented primal IPW estimator for the counterfactual mean E[Y(t)]. :param data: pandas data frame containing the data. :param assignment: assignment value for treatment. :param model_binary: string specifying modeling strategy to use for binary variables: e.g. glm-binary. :param model_continuous: string specifying modeling strategy to use for continuous variables: e.g. glm-continuous. :return: float corresponding to computed E[Y(t)]. """ # pedantic checks to make sure the method returns valid estimates if self.strategy != "p-fixable" and self.strategy != "a-fixable": raise RuntimeError( "Augmented primal IPW will not return valid estimates as treatment is not p-fixable" ) if not self.is_mb_shielded: raise RuntimeError( "EIF will not return valid estimates as graph is not mb-shielded" ) # compute primal and dual estimates and add them to the data frame beta_primal = self._beta_primal(data, assignment, model_binary, model_continuous) beta_dual = self._beta_dual(data, assignment, model_binary, model_continuous) data["beta_primal"] = beta_primal data["beta_dual"] = beta_dual # C := pre-treatment vars # L := post-treatment vars in the district of T # M := post treatment vars not in L (a.k.a. the rest) C = self.graph.pre([self.treatment], self.p_order) post = set(self.graph.vertices).difference(C) L = post.intersection(self.graph.district(self.treatment)) M = post - L IF = 0 # iterate over all variables for V in self.graph.vertices: # get the Markov pillow mp_V = self.graph.markov_pillow([V], self.p_order) # if the variables is in M, project using the primal otherwise use the dual # to fit E[beta | mp(V)] if V in M: formula = "beta_primal" + " ~ " + '+'.join(mp_V) else: formula = "beta_dual" + " ~ " + '+'.join(mp_V) # special logic for if there the Markov pillow is empty if len(mp_V) != 0: model_mpV = model_continuous(data, formula) pred_mpV = model_mpV.predict(data) else: pred_mpV = np.mean(beta_dual) # fit E[beta | V, mp(V)] formula = formula + " + " + V model_VmpV = model_continuous(data, formula) pred_VmpV = model_VmpV.predict(data) # add contribution of current variable as E[beta | V, mp(V)] - E[beta | mp(V)] IF += pred_VmpV - pred_mpV # add final contribution so that estimator is not mean-zero IF += np.mean(beta_dual) # return efficient APIPW estimate return np.mean(IF) def _fit_intrinsic_kernel(self, data, district, model_binary=None, model_continuous=None): """ Get estimates of an intrinsic kernel q_D(D|pa(D)) for each sample. :param data: pandas data frame containing the data. :param model_binary: string specifying modeling strategy to use for binary variables: e.g. glm-binary. :param model_continuous: string specifying modeling strategy to use for continuous variables: e.g. glm-continuous. :return: numpy array of estimated probabilities of the kernel for each sample. """ fixing_prob = np.ones(len(data)) # get parents of the district parents = self.graph.parents(district) - district # initialize with ancestral margin as fixing descendants are just sums G = self.graph.subgraph(self.graph.ancestors(district)) # we know D is intrinsic because of prior checks remaining_vertices = set( G.vertices ) - district - parents # is subtracting parents here ok? think so.. while not G.fixable(parents)[0]: fixed = False # at every step try to simplify as much as possible by fixing # childless vertices as these correspond to just sums # also find a backup fixable vertex in case there are no childless ones iter_gen = iter(remaining_vertices) i = 0 while not fixed and i < len(remaining_vertices): i += 1 V = next(iter_gen) if len(G.children([V])) == 0: G.fix([V]) fixed = True remaining_vertices.remove(V) elif G.fixable([V])[0]: fixable_V = V # if we fixed something go back and see if we can fix another childless vertex # or if the requirement that parents are fixable is satisfied if fixed: continue # otherwise do a true fix corresponding to reweighting # using the fixable V that we found V = fixable_V mb_V = G.markov_blanket([V]) formula = V + " ~ " + '+'.join(mb_V) # p(V = 1 | .) if self.state_space_map_[V] == "binary": model = model_binary(data, formula, 1 / fixing_prob) prob_V = model.predict(data) indices_V0 = data.index[data[V] == 0] # p(V | .) prob_V[indices_V0] = 1 - prob_V[indices_V0] # handling continuous data else: model = model_continuous(data, formula, 1 / fixing_prob) E_V = model.predict(data) std = np.std(data[V] - E_V) prob_V = norm.pdf(data[V], loc=E_V, scale=std) fixing_prob *= prob_V G.fix([V]) remaining_vertices.remove(V) # get the Markov blanket of the parents in this final graph mb_parents = G.markov_blanket(parents) # iterate over each parent and get weights required to fix them for V in parents: # p(V = 1 | .) mp_V = mb_parents.intersection(self.graph.pre([V], self.n_order)) if len(mp_V) != 0: formula = V + " ~ " + '+'.join(mp_V) else: formula = V + " ~ -1 + 1" if self.state_space_map_[V] == "binary": model = model_binary(data, formula, 1 / fixing_prob) prob_V = model.predict(data) indices_V0 = data.index[data[V] == 0] # p(V | .) prob_V[indices_V0] = 1 - prob_V[indices_V0] # handling continuous data else: model = model_continuous(data, formula, 1 / fixing_prob) E_V = model.predict(data) std = np.std(data[V] - E_V) prob_V = norm.pdf(data[V], loc=E_V, scale=std) fixing_prob *= prob_V kernel_prob = np.ones(len(data)) # iterate over member of the intrinsic set and get the final kernel weights for V in district: # p(V = 1 | .) mp_V = parents.union( district.intersection(self.graph.pre(V, self.n_order))) if len(mp_V) != 0: formula = V + " ~ " + '+'.join(mp_V) else: formula = V + " ~ -1 + 1" if self.state_space_map_[V] == "binary": model = model_binary(data, formula, 1 / fixing_prob) prob_V = model.predict(data) indices_V0 = data.index[data[V] == 0] # p(V | .) prob_V[indices_V0] = 1 - prob_V[indices_V0] # handling continuous data else: model = model_continuous(data, formula, 1 / fixing_prob) E_V = model.predict(data) std = np.std(data[V] - E_V) prob_V = norm.pdf(data[V], loc=E_V, scale=std) kernel_prob *= prob_V return kernel_prob def _get_nested_rebalanced_weights(self, data, model_binary=None, model_continuous=None): """ Get the rebalancing weights required for nested IPW and augmented nested IPW :param data: pandas data frame containing the data. :param model_binary: string specifying modeling strategy to use for binary variables: e.g. glm-binary. :param model_continuous: string specifying modeling strategy to use for continuous variables: e.g. glm-continuous. :return: numpy array corresponding to rebalancing weights. """ # first get all districts of GY* that intersect with district of T district_T = self.graph.district(self.treatment) modified_districts = [ district for district in self.one_id.Gystar.districts if len(district.intersection(district_T)) != 0 ] # placeholder for the rebalancing probability rebalance_prob = np.ones(len(data)) # iterate over each modified district for district in modified_districts: # first compute weights in the denominator of \prod_{Vi in district} p(Vi | mp(Vi)) for V in district: # Fit V | mp(V) mp_V = self.graph.markov_pillow([V], self.n_order) formula = V + " ~ " + '+'.join(mp_V) # p(V = 1 | .) if self.state_space_map_[V] == "binary": model = model_binary(data, formula) prob_V = model.predict(data) indices_V0 = data.index[data[V] == 0] # p(V | .) prob_V[indices_V0] = 1 - prob_V[indices_V0] # handling continuous data else: model = model_continuous(data, formula) E_V = model.predict(data) std = np.std(data[V] - E_V) prob_V = norm.pdf(data[V], loc=E_V, scale=std) rebalance_prob *= 1 / prob_V # now compute the q_D(D | pa(D)) rebalance_prob *= self._fit_intrinsic_kernel( data, district, model_binary, model_continuous) return 1 / rebalance_prob def _nested_ipw(self, data, assignment, model_binary=None, model_continuous=None): """ Nested IPW estimator for the counterfactual mean E[Y(t)]. :param data: pandas data frame containing the data. :param assignment: assignment value for treatment. :param model_binary: string specifying modeling strategy to use for binary variables: e.g. glm-binary. :param model_continuous: string specifying modeling strategy to use for continuous variables: e.g. glm-continuous. :return: float corresponding to computed E[Y(t)]. """ # pedantic checks to make sure the method returns valid estimates if self.strategy == "Not ID": raise RuntimeError( "Nested IPW will not return valid estimates as causal effect is not identified" ) # fit T | mp(T) with the rebalanced weights and compute the nested IPW rebalance_weights = self._get_nested_rebalanced_weights( data, model_binary, model_continuous) # extract outcome from data frame and compute Markov pillow of treatment Y = data[self.outcome] mp_T = self.graph.markov_pillow([self.treatment], self.n_order) if len(mp_T) != 0: # fit T | mp(T) and compute probability of treatment for each sample formula = self.treatment + " ~ " + '+'.join(mp_T) model = model_binary(data, formula, weights=rebalance_weights) prob_T = model.predict(data) else: prob_T = np.ones(len(data)) * np.average(data[self.treatment], weights=rebalance_weights) indices_T0 = data.index[data[self.treatment] == 0] prob_T[indices_T0] = 1 - prob_T[indices_T0] # compute nested IPW estimate indices = data[self.treatment] == assignment return np.mean((indices / prob_T) * Y) def _augmented_nested_ipw(self, data, assignment, model_binary=None, model_continuous=None): """ Augmented nested IPW estimator for the counterfactual mean E[Y(t)]. :param data: pandas data frame containing the data. :param assignment: assignment value for treatment. :param model_binary: string specifying modeling strategy to use for binary variables: e.g. glm-binary. :param model_continuous: string specifying modeling strategy to use for continuous variables: e.g. glm-continuous. :return: float corresponding to computed E[Y(t)]. """ if self.strategy == "Not ID": raise RuntimeError( "Nested IPW will not return valid estimates as causal effect is not identified" ) # get the rebalancing weights rebalance_weights = self._get_nested_rebalanced_weights( data, model_binary, model_continuous) # extract the outcome and get Markov pillow of the treatment Y = data[self.outcome] mp_T = self.graph.markov_pillow([self.treatment], self.n_order) if len(mp_T) != 0: # fit T | mp(T) and predict treatment probabilities formula_T = self.treatment + " ~ " + '+'.join(mp_T) # + "+ ones" model = model_binary(data, formula_T, weights=rebalance_weights) prob_T = model.predict(data) formula_Y = self.outcome + " ~ " + self.treatment + '+' + '+'.join( mp_T) else: prob_T = np.ones(len(data)) * np.average(data[self.treatment], weights=rebalance_weights) formula_Y = self.outcome + " ~ " + self.treatment indices_T0 = data.index[data[self.treatment] == 0] prob_T[indices_T0] = 1 - prob_T[indices_T0] indices = data[self.treatment] == assignment # fit Y | T=t, mp(T) and predict outcomes under assignment T=t data_assign = data.copy() data_assign[self.treatment] = assignment if self.state_space_map_[self.outcome] == "binary": model = model_binary(data, formula_Y, weights=rebalance_weights) else: model = model_continuous(data, formula_Y, weights=rebalance_weights) Yhat_vec = model.predict(data_assign) # return ANIPW estimate return np.mean((indices / prob_T) * (Y - Yhat_vec) + Yhat_vec) def compute_effect(self, data, estimator, model_binary=None, model_continuous=None, n_bootstraps=0, alpha=0.05): """ Bootstrap functionality to compute the Average Causal Effect if the outcome is continuous or the Causal Odds Ratio if the outcome is binary. Returns the point estimate as well as lower and upper quantiles for a user specified confidence level. :param data: pandas data frame containing the data. :param estimator: string indicating what estimator to use: e.g. eff-apipw. :param model_binary: string specifying modeling strategy to use for binary variables: e.g. glm-binary. :param model_continuous: string specifying modeling strategy to use for continuous variables: e.g. glm-continuous. :param n_bootstraps: number of bootstraps. :param alpha: the significance level with the default value of 0.05. :return: one float corresponding to ACE/OR if n_bootstraps=0, else three floats corresponding to ACE/OR, lower quantile, upper quantile. """ # instantiate modeling strategy with defaults if not model_binary: model_binary = self._fit_binary_glm if not model_continuous: model_continuous = self._fit_continuous_glm # add a column of ones to fit intercept terms data['ones'] = np.ones(len(data)) # get state space of all variables for colname, colvalues in data.iteritems(): if set([0, 1]).issuperset(colvalues.unique()): self.state_space_map_[colname] = "binary" else: self.state_space_map_[colname] = "continuous" # instantiate estimator and get point estimate of ACE method = self.estimators[estimator] point_estimate_T1 = method(data, 1, model_binary, model_continuous) point_estimate_T0 = method(data, 0, model_binary, model_continuous) # if Y is binary report log of odds ration, if Y is continuous report ACE if self.state_space_map_[self.outcome] == "binary": ace = np.log((point_estimate_T1 / (1 - point_estimate_T1)) / (point_estimate_T0 / (1 - point_estimate_T0))) else: ace = point_estimate_T1 - point_estimate_T0 if n_bootstraps > 0: ace_vec = [] Ql = alpha / 2 Qu = 1 - alpha / 2 # iterate over bootstraps for iter in range(n_bootstraps): # resample the data with replacement data_sampled = data.sample(len(data), replace=True) data_sampled.reset_index(drop=True, inplace=True) # estimate ACE in resampled data estimate_T1 = method(data_sampled, 1, model_binary, model_continuous) estimate_T0 = method(data_sampled, 0, model_binary, model_continuous) # if Y is binary report log of odds ration, if Y is continuous report ACE if self.state_space_map_[self.outcome] == "binary": ace_vec.append( np.log((estimate_T1 / (1 - estimate_T1)) / (estimate_T0 / (1 - estimate_T0)))) else: ace_vec.append(estimate_T1 - estimate_T0) # calculate the quantiles quantiles = np.quantile(ace_vec, q=[Ql, Qu]) q_low = quantiles[0] q_up = quantiles[1] return ace, q_low, q_up return ace