def test_dim(self): a = np.array([0, 0, 0, 1]) with self.assertRaises(ValueError) as context: onehot_reverse(a) msg = context.exception self.assertEqual(str(msg), "Input array must have 2 dimensions\n" "Got predictions.ndim: 1")
def test_dim(self): a = np.array([0, 0, 0, 1]) with self.assertRaises(ValueError) as context: onehot_reverse(a) msg = context.exception self.assertEqual( str(msg), "Input array must have 2 dimensions\n" "Got predictions.ndim: 1")
def test_proba(self): a = np.array([[0.66, 0.24, 0.10], [0.66, 0.24, 0.10], [0.66, 0.24, 0.10], [0.24, 0.66, 0.10]]) got = onehot_reverse(a) expect = np.array([0, 0, 0, 1], dtype=np.int32) self.assertTrue(np.array_equal(got, expect))
def test_defaults(self): a = np.array([[1., 0., 0., 0.], [0., 1., 0., 0.], [0., 0., 0., 1.], [0., 0., 0., 1.]]) got = onehot_reverse(a) expect = np.array([0, 1, 3, 3], dtype=np.int32) self.assertTrue(np.array_equal(got, expect))