Пример #1
0
    def plot_violin_no_cluster_key():
        from anndata import AnnData as _AnnData

        kwargs.pop("ax", None)
        kwargs.pop("keys", None)  # don't care
        kwargs.pop("save", None)

        kwargs["show"] = False
        kwargs["groupby"] = points
        kwargs["xlabel"] = None
        kwargs["rotation"] = xrot

        data = np.ravel(adata.obsm[lk].X.T)[..., np.newaxis]
        tmp = _AnnData(csr_matrix(data.shape, dtype=np.float32))
        tmp.obs["absorption probability"] = data
        tmp.obs[points] = (pd.Series(
            np.concatenate([[f"{dir_prefix.lower()} {n}"] * adata.n_obs
                            for n in adata.obsm[lk].names
                            ])).astype("category").values)
        tmp.obs[points].cat.reorder_categories(
            [f"{dir_prefix.lower()} {n}" for n in adata.obsm[lk].names],
            inplace=True)
        tmp.uns[f"{points}_colors"] = adata.obsm[lk].colors

        fig, ax = plt.subplots(figsize=figsize if figsize is not None else
                               (8, 6),
                               dpi=dpi)
        ax.set_title(points.capitalize())

        violin(tmp, keys=["absorption probability"], ax=ax, **kwargs)

        return fig
Пример #2
0
    def __init__(
        self,
        transition_matrix: Optional[Union[np.ndarray, spmatrix, str]] = None,
        adata: Optional[AnnData] = None,
        backward: bool = False,
        compute_cond_num: bool = False,
    ):
        from anndata import AnnData as _AnnData

        if transition_matrix is None:
            transition_matrix = _transition(
                Direction.BACKWARD if backward else Direction.FORWARD)
            logg.debug(
                f"Setting transition matrix key to `{transition_matrix!r}`")

        if isinstance(transition_matrix, str):
            if adata is None:
                raise ValueError(
                    "When `transition_matrix` specifies a key to `adata.obsp`, `adata` cannot be None."
                )
            transition_matrix = _read_graph_data(adata, transition_matrix)

        if not isinstance(transition_matrix, (np.ndarray, spmatrix)):
            raise TypeError(
                f"Expected transition matrix to be of type `numpy.ndarray` or `scipy.sparse.spmatrix`, "
                f"found `{type(transition_matrix).__name__!r}`.")

        if transition_matrix.shape[0] != transition_matrix.shape[1]:
            raise ValueError(
                f"Expected transition matrix to be square, found `{transition_matrix.shape}`."
            )

        if not np.allclose(np.sum(transition_matrix, axis=1), 1.0, rtol=_RTOL):
            raise ValueError(
                "Not a valid transition matrix: not all rows sum to 1.")

        if adata is None:
            logg.warning("Creating empty `AnnData` object")
            adata = _AnnData(
                csr_matrix((transition_matrix.shape[0], 1), dtype=np.float32))

        super().__init__(adata,
                         backward=backward,
                         compute_cond_num=compute_cond_num)
        self._transition_matrix = csr_matrix(transition_matrix)
        self._maybe_compute_cond_num()
Пример #3
0
def cluster_lineage(
    adata: AnnData,
    model: _input_model_type,
    genes: Sequence[str],
    lineage: str,
    backward: bool = False,
    time_range: _time_range_type = None,
    clusters: Optional[Sequence[str]] = None,
    n_points: int = 200,
    time_key: str = "latent_time",
    norm: bool = True,
    recompute: bool = False,
    callback: _callback_type = None,
    ncols: int = 3,
    sharey: Union[str, bool] = False,
    key: Optional[str] = None,
    random_state: Optional[int] = None,
    use_leiden: bool = False,
    show_progress_bar: bool = True,
    n_jobs: Optional[int] = 1,
    backend: str = _DEFAULT_BACKEND,
    figsize: Optional[Tuple[float, float]] = None,
    dpi: Optional[int] = None,
    save: Optional[Union[str, Path]] = None,
    pca_kwargs: Dict = MappingProxyType({"svd_solver": "arpack"}),
    neighbors_kwargs: Dict = MappingProxyType({"use_rep": "X"}),
    clustering_kwargs: Dict = MappingProxyType({}),
    return_models: bool = False,
    **kwargs,
) -> Optional[_return_model_type]:
    """
    Cluster gene expression trends within a lineage and plot the clusters.

    This function is based on Palantir, see [Setty19]_. It can be used to discover modules of genes that drive
    development along a given lineage. Consider running this function on a subset of genes which are potential
    lineage drivers, identified e.g. by running :func:`cellrank.tl.lineage_drivers`.

    Parameters
    ----------
    %(adata)s
    %(model)s
    %(genes)s
    lineage
        Name of the lineage for which to cluster the genes.
    %(backward)s
    %(time_ranges)s
    clusters
        Cluster identifiers to plot. If `None`, all clusters will be considered. Useful when
        plotting previously computed clusters.
    n_points
        Number of points used for prediction.
    time_key
        Key in ``adata.obs`` where the pseudotime is stored.
    norm
        Whether to z-normalize each trend to have zero mean, unit variance.
    recompute
        If `True`, recompute the clustering, otherwise try to find already existing one.
    %(model_callback)s
    ncols
        Number of columns for the plot.
    sharey
        Whether to share y-axis across multiple plots.
    key
        Key in ``adata.uns`` where to save the results. If `None`, it will be saved as ``lineage_{lineage}_trend`` .
    random_state
        Random seed for reproducibility.
    use_leiden
        Whether to use :func:`scanpy.tl.leiden` for clustering or :func:`scanpy.tl.louvain`.
    %(parallel)s
    %(plotting)s
    pca_kwargs
        Keyword arguments for :func:`scanpy.pp.pca`.
    neighbors_kwargs
        Keyword arguments for :func:`scanpy.pp.neighbors`.
    clustering_kwargs
        Keyword arguments for :func:`scanpy.tl.louvain` or :func:`scanpy.tl.leiden`.
    %(return_models)s
    **kwargs:
        Keyword arguments for :meth:`cellrank.ul.models.BaseModel.prepare`.

    Returns
    -------
    %(plots_or_returns_models)s

        Also updates ``adata.uns`` with the following:

            - ``key`` or ``lineage_{lineage}_trend`` - an :class:`anndata.AnnData` object of
              shape `(n_genes, n_points)` containing the clustered genes.
    """

    import scanpy as sc
    from anndata import AnnData as _AnnData

    lineage_key = str(AbsProbKey.BACKWARD if backward else AbsProbKey.FORWARD)
    if lineage_key not in adata.obsm:
        raise KeyError(
            f"Lineages key `{lineage_key!r}` not found in `adata.obsm`.")

    _ = adata.obsm[lineage_key][lineage]

    genes = _unique_order_preserving(genes)
    _check_collection(adata, genes, "var_names", kwargs.get("use_raw", False))

    if key is None:
        key = f"lineage_{lineage}_trend"

    if recompute or key not in adata.uns:
        kwargs["backward"] = backward
        kwargs["time_key"] = time_key
        kwargs["n_test_points"] = n_points
        models = _create_models(model, genes, [lineage])
        all_models, models, genes, _ = _fit_bulk(
            models,
            _create_callbacks(adata, callback, genes, [lineage], **kwargs),
            genes,
            lineage,
            time_range,
            return_models=True,  # always return (better error messages)
            filter_all_failed=True,
            parallel_kwargs={
                "show_progress_bar": show_progress_bar,
                "n_jobs": _get_n_cores(n_jobs, len(genes)),
                "backend": _get_backend(models, backend),
            },
            **kwargs,
        )

        # `n_genes, n_test_points`
        trends = np.vstack(
            [model[lineage].y_test for model in models.values()]).T

        if norm:
            logg.debug("Normalizing trends")
            _ = StandardScaler(copy=False).fit_transform(trends)

        trends = _AnnData(trends.T)
        trends.obs_names = genes

        # sanity check
        if trends.n_obs != len(genes):
            raise RuntimeError(
                f"Expected to find `{len(genes)}` genes, found `{trends.n_obs}`."
            )
        if trends.n_vars != n_points:
            raise RuntimeError(
                f"Expected to find `{n_points}` points, found `{trends.n_vars}`."
            )

        random_state = np.random.mtrand.RandomState(random_state).randint(
            2**16)

        pca_kwargs = dict(pca_kwargs)
        pca_kwargs.setdefault("n_comps", min(50, n_points, len(genes)) - 1)
        pca_kwargs.setdefault("random_state", random_state)
        sc.pp.pca(trends, **pca_kwargs)

        neighbors_kwargs = dict(neighbors_kwargs)
        neighbors_kwargs.setdefault("random_state", random_state)
        sc.pp.neighbors(trends, **neighbors_kwargs)

        clustering_kwargs = dict(clustering_kwargs)
        clustering_kwargs["key_added"] = "clusters"
        clustering_kwargs.setdefault("random_state", random_state)
        try:
            if use_leiden:
                sc.tl.leiden(trends, **clustering_kwargs)
            else:
                sc.tl.louvain(trends, **clustering_kwargs)
        except ImportError as e:
            logg.warning(str(e))
            if use_leiden:
                sc.tl.louvain(trends, **clustering_kwargs)
            else:
                sc.tl.leiden(trends, **clustering_kwargs)

        logg.info(f"Saving data to `adata.uns[{key!r}]`")
        adata.uns[key] = trends
    else:
        all_models = None
        logg.info(f"Loading data from `adata.uns[{key!r}]`")
        trends = adata.uns[key]

    if "clusters" not in trends.obs:
        raise KeyError(
            "Unable to find the clustering in `trends.obs['clusters']`.")

    if clusters is None:
        clusters = trends.obs["clusters"].cat.categories
    for c in clusters:
        if c not in trends.obs["clusters"].cat.categories:
            raise ValueError(
                f"Invalid cluster name `{c!r}`. "
                f"Valid options are `{list(trends.obs['clusters'].cat.categories)}`."
            )

    nrows = int(np.ceil(len(clusters) / ncols))
    fig, axes = plt.subplots(
        nrows,
        ncols,
        figsize=(ncols * 10, nrows * 10) if figsize is None else figsize,
        sharey=sharey,
        dpi=dpi,
    )

    if not isinstance(axes, Iterable):
        axes = [axes]
    axes = np.ravel(axes)

    j = 0
    for j, (ax, c) in enumerate(zip(axes, clusters)):  # noqa
        data = trends[trends.obs["clusters"] == c].X
        mean, sd = np.mean(data, axis=0), np.var(data, axis=0)
        sd = np.sqrt(sd)

        for i in range(data.shape[0]):
            ax.plot(data[i], color="gray", lw=0.5)

        ax.plot(mean, lw=2, color="black")
        ax.plot(mean - sd, lw=1.5, color="black", linestyle="--")
        ax.plot(mean + sd, lw=1.5, color="black", linestyle="--")
        ax.fill_between(range(len(mean)),
                        mean - sd,
                        mean + sd,
                        color="black",
                        alpha=0.1)

        ax.set_title(f"Cluster {c}")
        ax.set_xticks([])

        if not sharey:
            ax.set_yticks([])

    for j in range(j + 1, len(axes)):
        axes[j].remove()

    if save is not None:
        save_fig(fig, save)

    if return_models:
        return all_models
Пример #4
0
    def __init__(
        self,
        transition_matrix: Optional[
            Union[np.ndarray, spmatrix, KernelExpression, str]
        ] = None,
        adata: Optional[AnnData] = None,
        backward: bool = False,
        compute_cond_num: bool = False,
        **kwargs: Any,
    ):
        from anndata import AnnData as _AnnData

        self._origin = "'array'"
        params = {}

        if transition_matrix is None:
            transition_matrix = _transition(
                Direction.BACKWARD if backward else Direction.FORWARD
            )
            logg.debug(f"Setting transition matrix key to `{transition_matrix!r}`")

        if isinstance(transition_matrix, str):
            if adata is None:
                raise ValueError(
                    "When `transition_matrix` specifies a key to `adata.obsp`, `adata` cannot be None."
                )
            self._origin = f"adata.obsp[{transition_matrix!r}]"
            transition_matrix = _read_graph_data(adata, transition_matrix)

        elif isinstance(transition_matrix, KernelExpression):
            if transition_matrix._transition_matrix is None:
                raise ValueError(
                    "Compute transition matrix first as `.compute_transition_matrix()`."
                )
            if adata is not None and adata is not transition_matrix.adata:
                logg.warning(
                    "Ignoring supplied `adata` object because it differs from the kernel's `adata` object."
                )

            # use `str` because it captures the params
            self._origin = str(transition_matrix).strip("~<>")
            params = transition_matrix.params.copy()
            backward = transition_matrix.backward
            adata = transition_matrix.adata
            transition_matrix = transition_matrix.transition_matrix

        if not isinstance(transition_matrix, (np.ndarray, spmatrix)):
            raise TypeError(
                f"Expected transition matrix to be of type `numpy.ndarray` or `scipy.sparse.spmatrix`, "
                f"found `{type(transition_matrix).__name__!r}`."
            )

        if transition_matrix.shape[0] != transition_matrix.shape[1]:
            raise ValueError(
                f"Expected transition matrix to be square, found `{transition_matrix.shape}`."
            )

        if not np.allclose(np.sum(transition_matrix, axis=1), 1.0, rtol=_RTOL):
            raise ValueError("Not a valid transition matrix, not all rows sum to 1")

        if adata is None:
            logg.warning("Creating empty `AnnData` object")
            adata = _AnnData(
                csr_matrix((transition_matrix.shape[0], 1), dtype=np.float32)
            )

        super().__init__(
            adata, backward=backward, compute_cond_num=compute_cond_num, **kwargs
        )

        self._params = params
        self._transition_matrix = csr_matrix(transition_matrix)
        self._maybe_compute_cond_num()
Пример #5
0
def cluster_lineage(
        adata: AnnData,
        model: _model_type,
        genes: Sequence[str],
        lineage: str,
        backward: bool = False,
        time_range: _time_range_type = None,
        clusters: Optional[Sequence[str]] = None,
        n_points: int = 200,
        time_key: str = "latent_time",
        cluster_key: str = "clusters",
        norm: bool = True,
        recompute: bool = False,
        callback: _callback_type = None,
        ncols: int = 3,
        sharey: Union[str, bool] = False,
        key_added: Optional[str] = None,
        show_progress_bar: bool = True,
        n_jobs: Optional[int] = 1,
        backend: str = _DEFAULT_BACKEND,
        figsize: Optional[Tuple[float, float]] = None,
        dpi: Optional[int] = None,
        save: Optional[Union[str, Path]] = None,
        pca_kwargs: Dict = MappingProxyType({"svd_solver": "arpack"}),
        neighbors_kwargs: Dict = MappingProxyType({"use_rep": "X"}),
        louvain_kwargs: Dict = MappingProxyType({}),
        **kwargs,
) -> None:
    """
    Cluster gene expression trends within a lineage and plot the clusters.

    This function is based on Palantir, see [Setty19]_. It can be used to discover modules of genes that drive
    development along a given lineage. Consider running this function on a subset of genes which are potential lineage
    drivers, identified e.g. by running :func:`cellrank.tl.lineage_drivers`.

    Parameters
    ----------
    %(adata)s
    %(model)s
    %(genes)s
    lineage
        Name of the lineage for which to cluster the genes.
    %(backward)s
    %(time_ranges)s
    clusters
        Cluster identifiers to plot. If `None`, all clusters will be considered.
        Useful when plotting previously computed clusters.
    n_points
        Number of points used for prediction.
    time_key
        Key in ``adata.obs`` where the pseudotime is stored.
    cluster_key
        Key in ``adata.obs`` where the clustering is stored.
    norm
        Whether to z-normalize each trend to have zero mean, unit variance.
    recompute
        If `True`, recompute the clustering, otherwise try to find already existing one.
    %(model_callback)s
    ncols
        Number of columns for the plot.
    sharey
        Whether to share y-axis across multiple plots.
    key_added
        Postfix to add when saving the results to ``adata.uns``.
    %(parallel)s
    %(plotting)s
    pca_kwargs
        Keyword arguments for :func:`scanpy.pp.pca`.
    neighbors_kwargs
        Keyword arguments for :func:`scanpy.pp.neighbors`.
    louvain_kwargs
        Keyword arguments for :func:`scanpy.tl.louvain`.
    **kwargs:
        Keyword arguments for :meth:`cellrank.ul.models.BaseModel.prepare`.

    Returns
    -------
    %(just_plots)s

        Updates ``adata.uns`` with the following key:

            - ``lineage_{lineage}_trend_{key_added}`` - an :class:`anndata.AnnData` object
              of shape ``(n_genes, n_points)`` containing the clustered genes.
    """

    import scanpy as sc
    from anndata import AnnData as _AnnData

    lineage_key = str(AbsProbKey.BACKWARD if backward else AbsProbKey.FORWARD)
    if lineage_key not in adata.obsm:
        raise KeyError(
            f"Lineages key `{lineage_key!r}` not found in `adata.obsm`.")

    _ = adata.obsm[lineage_key][lineage]

    genes = _unique_order_preserving(genes)
    _check_collection(adata, genes, "var_names", kwargs.get("use_raw", False))

    key_to_add = f"lineage_{lineage}_trend"
    if key_added is not None:
        logg.debug(f"Adding key `{key_added!r}`")
        key_to_add += f"_{key_added}"

    if recompute or key_to_add not in adata.uns:
        kwargs["time_key"] = time_key  # kwargs for the model.prepare
        kwargs["n_test_points"] = n_points
        kwargs["backward"] = backward

        models = _create_models(model, genes, [lineage])
        callbacks = _create_callbacks(adata, callback, genes, [lineage],
                                      **kwargs)

        backend = _get_backend(model, backend)
        n_jobs = _get_n_cores(n_jobs, len(genes))

        start = logg.info(f"Computing gene trends using `{n_jobs}` core(s)")
        trends = parallelize(
            _cluster_lineages_helper,
            genes,
            as_array=True,
            unit="gene",
            n_jobs=n_jobs,
            backend=backend,
            extractor=np.vstack,
            show_progress_bar=show_progress_bar,
        )(models, callbacks, lineage, time_range, **kwargs)
        logg.info("    Finish", time=start)

        trends = trends.T
        if norm:
            logg.debug("Normalizing using `StandardScaler`")
            _ = StandardScaler(copy=False).fit_transform(trends)

        trends = _AnnData(trends.T)
        trends.obs_names = genes

        # sanity check
        if trends.n_obs != len(genes):
            raise RuntimeError(
                f"Expected to find `{len(genes)}` genes, found `{trends.n_obs}`."
            )
        if n_points is not None and trends.n_vars != n_points:
            raise RuntimeError(
                f"Expected to find `{n_points}` points, found `{trends.n_vars}`."
            )

        pca_kwargs = dict(pca_kwargs)
        n_comps = pca_kwargs.pop(
            "n_comps",
            min(50, kwargs.get("n_test_points"), len(genes)) -
            1)  # default value

        sc.pp.pca(trends, n_comps=n_comps, **pca_kwargs)
        sc.pp.neighbors(trends, **neighbors_kwargs)

        louvain_kwargs = dict(louvain_kwargs)
        louvain_kwargs["key_added"] = cluster_key
        sc.tl.louvain(trends, **louvain_kwargs)

        adata.uns[key_to_add] = trends
    else:
        logg.info(f"Loading data from `adata.uns[{key_to_add!r}]`")
        trends = adata.uns[key_to_add]

    if clusters is None:
        if cluster_key not in trends.obs:
            raise KeyError(f"Invalid cluster key `{cluster_key!r}`.")
        clusters = trends.obs[cluster_key].cat.categories

    nrows = int(np.ceil(len(clusters) / ncols))
    fig, axes = plt.subplots(
        nrows,
        ncols,
        figsize=(ncols * 10, nrows * 10) if figsize is None else figsize,
        sharey=sharey,
        dpi=dpi,
    )

    if not isinstance(axes, Iterable):
        axes = [axes]
    axes = np.ravel(axes)

    j = 0
    for j, (ax, c) in enumerate(zip(axes, clusters)):  # noqa
        data = trends[trends.obs[cluster_key] == c].X
        mean, sd = np.mean(data, axis=0), np.var(data, axis=0)
        sd = np.sqrt(sd)

        for i in range(data.shape[0]):
            ax.plot(data[i], color="gray", lw=0.5)

        ax.plot(mean, lw=2, color="black")
        ax.plot(mean - sd, lw=1.5, color="black", linestyle="--")
        ax.plot(mean + sd, lw=1.5, color="black", linestyle="--")
        ax.fill_between(range(len(mean)),
                        mean - sd,
                        mean + sd,
                        color="black",
                        alpha=0.1)

        ax.set_title(f"Cluster {c}")
        ax.set_xticks([])

        if not sharey:
            ax.set_yticks([])

    for j in range(j + 1, len(axes)):
        axes[j].remove()

    if save is not None:
        save_fig(fig, save)