Пример #1
0
def test_tree2():
    """Tree2."""
    root = Node("root")
    s0 = Node("sub0", parent=root, edge=2)
    Node("sub0B", parent=s0, foo=4, edge=109)
    Node("sub0A", parent=s0, edge="")
    s1 = Node("sub1", parent=root, edge="")
    Node("sub1A", parent=s1, edge=7)
    Node("sub1B", parent=s1, edge=8)
    s1c = Node("sub1C", parent=s1, edge=22)
    Node("sub1Ca", parent=s1c, edge=42)

    def nodenamefunc(node):
        return '%s:%s' % (node.name, node.depth)

    def edgeattrfunc(node, child):
        return 'label="%s:%s"' % (node.name, child.name)

    r = RenderTreeGraph(root,
                        options=["rankdir=LR;"],
                        nodenamefunc=nodenamefunc,
                        nodeattrfunc=lambda node: "shape=box",
                        edgeattrfunc=edgeattrfunc)

    r.to_dotfile(join(GENPATH, "tree2.dot"))
    assert cmp(join(GENPATH, "tree2.dot"), join(REFPATH, "tree2.dot"))
Пример #2
0
    def plot_tree(self,
                  filepath,
                  edge_prop_metric=None,
                  node_label_func=None,
                  node_shape_func=None):
        """
        Function that is returning the dotprogram and saving the png in filepath.

        :param filepath: Path of the file
        :param node_metric_col_print_dict: Dict of what we want to print in the node
            and in which format.
            The structure of the Dict is: {'metric_name': {'type': type, 'digits': digits}}
            type must be in ['float', 'percent', 'int']
        :param edge_prop_metric: Metric to compute the proportion on each edge
        :param node_label_func: Function to be apply to each node to get the label
        :param node_shape_func: Function to be apply to each node to get the shape
        :return: dotprogram in a string format
        """

        render_tree = \
            RenderTreeGraph(node=self.tree,
                            nodeattrfunc=lambda node:
                            self._get_node_attr(node,
                                                node_label_func,
                                                node_shape_func),
                            edgeattrfunc=lambda node, child:
                            self._get_edge_attr(node, child, edge_prop_metric))

        render_tree.to_picture(filepath)
        return self._to_dot(render_tree)
Пример #3
0
def get_category(save_img=None):
    url = f'{trace_parts_url}/en/search/traceparts-classification-mechanical-components?CatalogPath=TRACEPARTS%3ATP01'
    r = requests.get(url)
    if r.status_code == 200:

        soup = BeautifulSoup(r.text, 'html.parser')
        root = Node('Mechanical components')
        node = root
        prev_level = 1

        for cat in soup.find_all('span', {'class': 'treeview-node-title'}):
            levels = cat.get('title').split('>')
            levels = [c.strip() for c in levels]

            if levels[0] == 'Mechanical components' and len(levels) > 1:
                depth = len(levels) - prev_level
                prev_level = len(levels)
                if depth <= 0:
                    for i in range(abs(depth) + 1):
                        node = node.parent
                node = Node(levels[-1], parent=node)

        for pre, fill, node in RenderTree(root):
            print("%s%s" % (pre, node.name))

        if save_img:
            RenderTreeGraph(root).to_picture(save_img)

    else:
        raise ConnectionError
Пример #4
0
 def __init__(self, ast, filename=None):
     self.root_node = None
     self.keys = {}
     self.nodes = deque([])
     self.nodes_keys = {}
     self.built(ast)
     RenderTreeGraph(self.nodes[0]).to_picture(filename=filename)
Пример #5
0
def run():
    hero = [CARDS['Ah'], CARDS['Qd']]
    villain = [CARDS['2s'], CARDS['2d']]
    board_test = [CARDS['Ad'], CARDS['Ac'], CARDS['As']]
    root = Node('Root')
    initial_game_state = {
        'pot_size': 2,
        'betting_lead': True,
        'hero_stack': 97,
        'last_bet': 0,
        'raised': False,
        'reraised': False,
        'folded': False,
        'villain_folded': False,
        'line': []
    }
    game = PokerGame(None, hero, villain, None, board=board_test)
    for i in range(N):
        game.set_board(board_test)
        game_state = copy.deepcopy(initial_game_state)
        game.simulate_round(FLOP, game_state, root, initial=True)

    RenderTreeGraph(root).to_picture("tree.png")
    for pre, fill, node in RenderTree(root):
        print("%s%s (%s) (%s) (%s) (%s)" %
              (pre, str(node.name).split(":")[-1], node.get_value(),
               node.get_value("regret"), node.get_value("regretSum"),
               node.get_value("strategyNOT")))
 def dot_render(self):
     Nodes = [Node(self._nodes[0]._long_description)]
     for i in range(len(self._nodes) - 1):
         Nodes.append(
             Node(self._nodes[i + 1]._long_description,
                  parent=Nodes[self._parents[i]]))
     for Line in RenderTreeGraph(Nodes[0]):
         print(Line)
Пример #7
0
def img_tree_visualize(data):
    '''
	Render tree to filename

	:filename:  data['config']['review_base_filename'] + tree
	:format: png

	'''
    directory = data['config']['report_directory'] + "/img/"
    filename = directory + "%s_%s.png" % (
        data['config']['review_base_filename'], "tree")
    RenderTreeGraph(data['tree']).to_picture(filename)
Пример #8
0
def test_tree_png():
    """Tree to png."""
    root = Node("root")
    s0 = Node("sub0", parent=root)
    Node("sub0B", parent=s0)
    Node("sub0A", parent=s0)
    s1 = Node("sub1", parent=root)
    Node("sub1A", parent=s1)
    Node("sub1B", parent=s1)
    s1c = Node("sub1C", parent=s1)
    Node("sub1Ca", parent=s1c)

    RenderTreeGraph(root).to_picture(join(GENPATH, "tree1.png"))
Пример #9
0
def test_tree1():
    """Tree1."""
    root = Node("root")
    s0 = Node("sub0", parent=root)
    Node("sub0B", parent=s0)
    Node("sub0A", parent=s0)
    s1 = Node("sub1", parent=root)
    Node("sub1A", parent=s1)
    Node("sub1B", parent=s1)
    s1c = Node("sub1C", parent=s1)
    Node(99, parent=s1c)

    RenderTreeGraph(root).to_dotfile(join(GENPATH, "tree1.dot"))
    assert cmp(join(GENPATH, "tree1.dot"), join(REFPATH, "tree1.dot"))
Пример #10
0
def plot_BKtree(tree, pic_path: str = ""):
    try:
        from anytree import Node, RenderTree
    except:
        raise ImportError(
            "The anytree module seems to not be installed in your environment.\nTo be able to use this method, you'll have to install it."
        )
    check_types([(
        "pic_path",
        pic_path,
        [str],
    )])
    try:
        import shutil

        screen_columns = shutil.get_terminal_size().columns
    except:
        import os

        screen_rows, screen_columns = os.popen("stty size", "r").read().split()
    print("-" * int(screen_columns))
    print("Bisection Levels: {}".format(max(tree["bisection_level"])))
    print("Number of Centers: {}".format(len(tree["center_id"])))
    print("Total Size: {}".format(max(tree["cluster_size"])))
    print("-" * int(screen_columns))
    tree_nodes = {}
    for idx in range(len(tree["center_id"])):
        tree_nodes[tree["center_id"][idx]] = Node(
            "[{}] (Size = {} | Score = {})".format(
                tree["center_id"][idx],
                tree["cluster_size"][idx],
                round(tree["withinss"][idx] / tree["totWithinss"][idx], 2),
            ))
    for idx, node_id in enumerate(tree["center_id"]):
        if (tree["left_child"][idx] in tree_nodes
                and tree["right_child"][idx] in tree_nodes):
            tree_nodes[node_id].children = [
                tree_nodes[tree["left_child"][idx]],
                tree_nodes[tree["right_child"][idx]],
            ]
    for pre, fill, node in RenderTree(tree_nodes[0]):
        print("%s%s" % (pre, node.name))
    if pic_path:
        from anytree.dotexport import RenderTreeGraph

        RenderTreeGraph(tree_nodes[0]).to_picture(pic_path)
        if isnotebook():
            from IPython.core.display import HTML, display

            display(HTML("<img src='{}'>".format(pic_path)))
Пример #11
0
def plot_tree(tree, metric: str = "probability", pic_path: str = ""):
    try:
        from anytree import Node, RenderTree
    except:
        raise Exception(
            "You must install the anytree module to be able to plot trees.")
    check_types([("metric", metric, [str], False),
                 ("pic_path", pic_path, [str], False)])
    try:
        import shutil
        screen_columns = shutil.get_terminal_size().columns
    except:
        import os
        screen_rows, screen_columns = os.popen('stty size', 'r').read().split()
    tree_id, nb_nodes, tree_depth, tree_breadth = tree["tree_id"][0], len(
        tree["node_id"]), max(tree["node_depth"]), sum(
            [1 if item else 0 for item in tree["is_leaf"]])
    print("-" * int(screen_columns))
    print("Tree Id: {}".format(tree_id))
    print("Number of Nodes: {}".format(nb_nodes))
    print("Tree Depth: {}".format(tree_depth))
    print("Tree Breadth: {}".format(tree_breadth))
    print("-" * int(screen_columns))
    tree_nodes = {}
    for idx in range(nb_nodes):
        op = "<" if not (tree["is_categorical_split"][idx]) else "="
        if (tree["is_leaf"][idx]):
            tree_nodes[tree["node_id"][idx]] = Node(
                '[{}] => {} ({} = {})'.format(
                    tree["node_id"][idx], tree["prediction"][idx], metric,
                    tree["probability/variance"][idx]))
        else:
            tree_nodes[tree["node_id"][idx]] = Node('[{}] ({} {} {} ?)'.format(
                tree["node_id"][idx], tree["split_predictor"][idx], op,
                tree["split_value"][idx]))
    for idx, node_id in enumerate(tree["node_id"]):
        if not (tree["is_leaf"][idx]):
            tree_nodes[node_id].children = [
                tree_nodes[tree["left_child_id"][idx]],
                tree_nodes[tree["right_child_id"][idx]]
            ]
    for pre, fill, node in RenderTree(tree_nodes[1]):
        print("%s%s" % (pre, node.name))
    if (pic_path):
        from anytree.dotexport import RenderTreeGraph
        RenderTreeGraph(tree_nodes[1]).to_picture(pic_path)
        if (isnotebook()):
            from IPython.core.display import HTML, display
            display(HTML("<img src='{}'>".format(pic_path)))
Пример #12
0
def printTree(edges_list):
    # create root
    root = Node("Root")

    for (node1, node2) in edges_list:
        Node(node2, parent=find_by_attr(root, node1))
    for pre, _, node in RenderTree(root):
        print("%s%s" % (pre, node.name))

    # Print to file --- GRAPVIZ MUST BE INSTALLED!!!
    installed_packages = [
        "%s" % i.key for i in pip.get_installed_distributions()
    ]

    if 'graphviz' in installed_packages:
        RenderTreeGraph(root).to_picture("../Outputs/Part3/tree.png")
        print('Tree generated correctly')
Пример #13
0
def buildMap(bnde, resources):
    #print "ENtre a buildMap con ",bnde
    #print bnde
    #print "tipo ",type(bnde)
    bnode = simplenode(bnde, parent=None)
    bnode.setFPath()
    #print "<resources>\n",'\n'.join(resources),'\n</resources>'
    for res in resources:
        resource = res.split('//')[1]
        # Que pasa cuando no tiene el protocolo? tengo que ver si se realizo lo anterior
        dirlist = resource.split('/')[1:]
        agrega(bnode, dirlist)
    dom = ''.join(parseurls.getDomain(bnode.getUrl()).split('://')[1]).replace(
        'www.', '')
    try:
        RenderTreeGraph(bnode).to_picture(dom + '.jpg')
    except:
        print 'Cant write sitemap imagefile'
    return bnode
Пример #14
0
def main(argv):
    inputUrl = ''
    inputDepth = 0

    try:
        opts, args = getopt.getopt(argv, "hu:d:", ["rootUrl=", "depth="])
    except getopt.GetoptError:
        print('index.py -u <url> -d <depth>')
        sys.exit(2)
    for opt, arg in opts:
        if opt == '-h':
            print('index.py -u <url> -d <depth>')
            sys.exit()
        elif opt in ("-u", "--rootUrl"):
            inputUrl = arg
        elif opt in ("-d", "--depth"):
            inputDepth = int(arg)
    print('Input url --> ', inputUrl)
    print('Depth --> ', inputDepth)

    rootNode = Node(inputUrl)

    iterative_deepening_search(rootNode, inputDepth)

    print("--------------------------------------------")
    print("Finalizando com >>>Iterative Deepening Search<<<<!")
    print("--------------------------------------------")

    print("Estrutura da árvore")
    print("--------------------------------------------")

    print(RenderTree(rootNode, style=DoubleStyle()).by_attr())

    #
    # for pre, fill, node in RenderTree(rootNode):
    #     print("%s%s" % (pre, node.name))
    #
    #
    RenderTreeGraph(rootNode).to_picture("tree.png")
def render_tree(tree, filepath):
    """Wrapper around rendering trees into `png` or `dot` formats. Tree are 
    rendered from the root node.
    
    Args:
        tree (NodeMixin): 
        filepath (str|Path): 
    """
    from anytree.dotexport import RenderTreeGraph
    tree = RenderTreeGraph(tree.root)
    base, ext = os.path.splitext(filepath)
    if ext == '.png':
        tree.to_picture(filename=filepath)
    elif ext == '.dot':
        tree.to_dotfile(filename=filepath)
    else:
        raise Exception
Пример #16
0
    def save_to_file(self, filename):
        def edgeattrfunc(node, child):
            return 'label=' + str(child.value)

        def nodeattrfunc(node):
            attr = 'shape='
            if node.is_leaf:
                attr += 'ellipse'
            else:
                attr += 'rectangle'
            return attr

        def nodenamefunc(node):
            name = node.name
            if node.is_root:
                name += '\n' + 'Height(%d)' % node.height
            name += '\n' + 'id(%d)' % node._id
            return name

        RenderTreeGraph(self.tree,
                        nodeattrfunc=nodeattrfunc,
                        edgeattrfunc=edgeattrfunc,
                        nodenamefunc=nodenamefunc).to_picture(filename)
Пример #17
0
 def render_image(self, name):
     RenderTreeGraph(self.root).to_picture(name)
Пример #18
0
# We define the impurity degree of a node u as: ImpurityDeg(u) = |L(v) : v ∈ N(u), L(u) 6= L(v)|
# where L(u) is the label, and N(u) is the neighborhood of (the nodes adjacent to) node u.
def neighborhood_impurity(node, data):
    return


# Main program
if len(sys.argv) < 3:
    sys.stderr.write("Syntax : python %s json_file function_name\n" %
                     sys.argv[0])
else:
    with open(sys.argv[1]) as data_file:
        data = json.load(data_file)
    requested_node = find_node(data, sys.argv[2])
    entry_node = find_node(data, "external node")

    root = Node("Entry node")
    tree = generate_tree(entry_node, data, root)

    for pre, fill, node in RenderTree(tree):
        print("%s%s" % (pre, node.name))

    from anytree.dotexport import RenderTreeGraph

    RenderTreeGraph(tree).to_picture("Callgraph.png")

    print("\nThe results for node", sys.argv[2], "are:")
    print("Node degree (out, in):", node_degree(requested_node, data))

    print("Node path length:", node_path_length(tree))
Пример #19
0
    dot_graph = nx.drawing.nx_agraph.read_dot(sys.argv[1])
    data = json_graph.node_link_data(dot_graph)

    data['links'] = [{
        'source': data['nodes'][link['source']]['id'],
        'target': data['nodes'][link['target']]['id']
    } for link in data['links']]

    with open(sys.argv[2]) as cvss3_file:
        cvss3_data = json.load(cvss3_file)
    interface = sys.argv[3] if len(sys.argv) > 3 else "external node"
    entry_node = find_node(data, interface)
    root = Node(interface)
    tree = generate_tree(entry_node, root)
    results_json = {}
    RenderTreeGraph(tree).to_picture(sys.argv[1] + "_callgraph.png")

    # For testing purposes only -- Displays the current tree
    # for pre, fill, node in RenderTree(tree):
    #     print("%s%s" % (pre, node.name))

    for node in data["nodes"]:
        if "label" in node:
            node_name = node['label']
        else:
            node_name = node['id']
        generate_json(node['id'])

    with open(sys.argv[1] + '_node_attributes.json', 'w') as fp:
        json.dump(results_json, fp)
#for pre, _, node in RenderTree(top):
#    treestr = u"%s%s" % (pre, node.name)
#    print(treestr.ljust(8), node.state_number)
def print_as_tabs(prev_state,next_state,input_label,output_label):
    print(str(prev_state) + "\t" + str(next_state) + "\t"+ str(input_label) + "\t" + str(output_label))


# In[222]:


p=PreOrderIter(top)
p=itertools.islice(p,1,None) #pass root

print_as_tabs(0,1,"<s>","<s>")
print_as_tabs(1,0,"<eps>","<eps>")
print_as_tabs(0,2,"</s>","</s>")
print_as_tabs(2,0,"<eps>","<eps>")
print_as_tabs(0,3,"<unk>","<unk>")
print_as_tabs(3,0,"<eps>","<eps>")
for n in p:
    parent_state_number=n.parent.state_number
    if n.parent.state_number!=0:
        parent_state_number+=3
    print_as_tabs(parent_state_number,n.state_number+3,n.name,n.name)
    if n.is_leaf:
        print_as_tabs(n.state_number+3,0,"+PRN","#")
print("0")
RenderTreeGraph(top).to_picture("udo.png")

Пример #21
0
        if isSafe(tup, pos - 1):
            subNode = Node(tup, parent=initial_node, depth=pos)
            if pos < len(initial_node.name):
                generate_children(subNode, pos + 1)


# generate_tree creates the initial node specified by length and creates the children
def generate_tree(length):
    initial_tuple = (-1, ) * length
    initial_node = Node(initial_tuple, depth=0)
    generate_children(initial_node)
    return initial_node


def solutions(root):
    for child in root.children:
        if child.depth == len(root.name):
            solution.append(child.name)
        solutions(child)


test_tree = generate_tree(8)
solutions(test_tree)
print solution
print boardIsSafe((0, 2, 4, 1, 3))

# for pre,fill, node in RenderTree(test_tree):
#   print("%s%s" % (pre,node.name))

RenderTreeGraph(test_tree).to_picture("state_tree_3.png")
Пример #22
0
        # Hit rock bottom, node does not contain text
        # Record this node, then return
        if v: print("_0_\nheading: {}\t level:{}".format(nodeHead(node),node.level))
        newNode = Node(nodeHead(node), parent=lastNode)
    else:
        # Node has something which could be children. Recursively call this function for all legitimate node-children
        lastNode = Node(nodeHead(node), parent=lastNode)
        for nextNode in node.content:
            if isNode(nextNode) and isinstance(nextNode, PyOrgMode.OrgElement):
                gobbleBranch(nextNode,lastNode)
    return

# Traverse the tree
gobbleBranch(trunk,lastNode)

# The location of the root node is a bit off
actualRoot = root.children[0]
actualRoot.name = "Org File Root"

# Render the tree in text
for pre, fill, node in RenderTree(actualRoot):
    # two ways to do the same thing
    #print("{}{}".format(pre.encode('utf-8'), node.name.encode('utf-8')))
    print("%s%s" % (pre, node.name))

# Render the tree as an image
from anytree.dotexport import RenderTreeGraph
RenderTreeGraph(actualRoot).to_picture(args.image)

# Source tangled from org_tree.org
Пример #23
0
    #plt.show()
    plt.savefig('outputs/maptile.png')


if __name__ == '__main__':

    REGIONS_URI = './data/bounds_coahuila.tsv'
    FOSAS_URI = './data/OperativosdeCampo2017-2020.xlsx'

    geodf = build_geodf(REGIONS_URI)

    ### creating a geographic tree from geo-data frame
    geotree = build_geotree(geodf)

    ### initial tree
    RenderTreeGraph(geotree).to_picture("outputs/inittree.png")

    ### loading findings data
    geotree.load_findings(FOSAS_URI)

    ### query geoparser ws with findings data
    geotree.geoparse_findings()

    ### final tree
    RenderTreeGraph(geotree).to_picture("outputs/finaltree.png")

    ### save new data
    tree_df = tree_as_df(geotree)
    tree_df.to_file('outputs/spatial_data.json', driver="GeoJSON")

    ### save map
Пример #24
0
            error()
        check_point(FACTOR[1], followset=FACTOR[0], patron_follow=ID_NUM)
    return temp


# PROGRAMA PRINCIPAL
actualizar_token()
raiz = programa()

if not os.path.exists(directorio_sintactico):
    os.makedirs(directorio_sintactico)

with open(directorio_sintactico + os.path.sep + ARBOL_TXT,
          "w") as archivo_arbol:
    archivo_arbol.write(str(RenderTree(raiz, style=AsciiStyle())))

if os.name == 'posix':
    RenderTreeGraph(raiz, nodeattrfunc=lambda node: "shape = box").to_picture(
        directorio_sintactico + os.path.sep + ARBOL_PNG)
elif os.name == 'nt':
    RenderTreeGraph(raiz, nodeattrfunc=lambda node: "shape = box").to_dotfile(
        directorio_sintactico + os.path.sep + ARBOL_DOT)
    comando = "dot " + directorio_sintactico + os.path.sep + ARBOL_DOT + " -T png -o " + directorio_sintactico + os.path.sep + ARBOL_PNG
    startupinfo = subprocess.STARTUPINFO()
    startupinfo.dwFlags |= subprocess.STARTF_USESHOWWINDOW
    subprocess.call(comando, startupinfo=startupinfo)

with open(directorio_sintactico + os.path.sep + "errores_sintacticos.txt",
          "w") as archivo_errores_sintacticos:
    for error in errores:
        archivo_errores_sintacticos.write(error + '\n')
Пример #25
0
 def renderTreeGraph(self):
     # graphic needs to be installed for the next line!
     RenderTreeGraph(self.root).to_picture("tree.png")
Пример #26
0
soup = drink_soup(url)
#common_classes,class_to_class_list_map = find_common_classes(url)
#common_ids = find_common_id_bases(soup)

#common_classes.sort(key=lambda x: x[1], reverse=True)
#single_parent_classes = OrderedDict()
#for common_class in common_classes:
#    parent_classes = find_common_parent_classes(soup, class_to_class_list_map[common_class[0]])
#    if len(parent_classes)==1:
#        single_parent_classes[common_class] = parent_classes[0][0]

homes = soup.find_all(class_="HomeCardV2 card-frame")
home_ex = homes[0]
home_tree = find_base_info(home_ex, "--")
print_tree(home_tree)
RenderTreeGraph(home_tree).to_picture("test.png")


def get_facts(tree):
    facts = []
    for pre, fill, node in RenderTree(home_tree):
        if node.name != "":
            for sibling in node.siblings:
                if sibling.name != "":
                    facts.append(
                        tuple(
                            sorted((node.name, sibling.name),
                                   cmp=locale.strcoll,
                                   reverse=True)))
    facts = list(set(facts))
    return facts
Пример #27
0
 def generate_dotfile(self, name):
     RenderTreeGraph(self.root).to_dotfile(name)
Пример #28
0
    for course in coursesInFile:
        courses[course['course_code']] = course

selectedCourse = ''

print('--------------Welcome to the UCalgary Prerequisites Wizard!-----------')
selectedCourse = input(
    'Select a UCalgary course you want to generate a prerequisites-tree from:')

prerequisitesTree = getPrerequisites(selectedCourse, courses)

importer = DictImporter()
root = importer.import_(prerequisitesTree)

RenderTreeGraph(root).to_picture("tree.png")
print('`tree.png` has been generated.')
if sys.platform == 'win32':
    subprocess.Popen(['start', 'tree.png'], shell=True)

elif sys.platform == 'darwin':
    subprocess.Popen(['open', 'tree.png'])

else:
    try:
        subprocess.Popen(['xdg-open', 'tree.png'])
    except OSError:
        print('Can\'t open file in system.')
# er, think of something else to try
# xdg-open *should* be supported by recent Gnome, KDE, Xfce
            # H(y_col) - H(y_col|column)
            d[c] = h - self.get_info_gain_byc(c)
        return max(d, key=d.get)
    ## Generate Decision Tree
    def train_decision_tree(self,node):
        c = self.get_max_info_gain()
        for v in pd.unique(self.dataset[c]):
            gb = self.dataset[self.dataset[c] == v].groupby(self.label)
            curr_node = Node('%s-%s' % (c, v), parent=node)

            if len(self.dataset.columns) > 2:
                if len(gb) == 1:
                    Node(self.dataset[self.dataset[c] == v].groupby(c)[self.label].first().iloc[0], parent=curr_node)
                else:
                    self.dataset = self.dataset[self.dataset[c] == v].drop(c, axis=1)
                    self.train_decision_tree(curr_node)

            else:
                Node(self.dataset[self.dataset[c] == v].groupby(self.label).size().idxmax(), parent=curr_node)

if __name__ == "__main__":
    df = pd.read_csv('Decision Tree\Dataset\dataset_training.csv')
    print(df)
    Decision_Tree = Decision_Tree(df,'Infected')

    root_node = Decision_Tree.create()
    for pre, fill, node in RenderTree(root_node):
        print("%s%s" % (pre, node.name))

    RenderTreeGraph(root_node).to_picture("decision_tree_id3.png")
Пример #30
0
                             parent=node)
            print('bot', next_node.name)
            explore_frontier(next_node, 'Top')

        if left == ' ' and direction != 'Left':
            next_node = Node('(' + str(yCord) + ',' + str(xCord - 1) + ')',
                             parent=node)
            print('left', next_node.name)
            explore_frontier(next_node, 'Right')

        if right == ' ' and direction != 'Right':
            next_node = Node('(' + str(yCord) + ',' + str(xCord + 1) + ')',
                             parent=node)
            print('right', next_node.name)
            explore_frontier(next_node, 'Left')


if __name__ == "__main__":
    #sys.setrecursionlimit(1000)
    medium_maze = input_to_array('./Inputs/mediumMaze.txt')
    for line in medium_maze:
        print(line)
    start = find_starting_position(medium_maze)
    print(start)
    start_node = Node(str(start))
    visitedNodes = []
    explore_frontier(start_node, 'None')
    for pre, fill, node in RenderTree(start_node):
        print("%s%s" % (pre, node.name))
    RenderTreeGraph(start_node).to_picture("tree.png")