Пример #1
0
    def _update_event_counts(self):

        root = self.query_lifted
        self.taxonomy.n_samples += 1

        for n in root.H:
            t = findall(self.taxonomy, filter_=lambda t: t.name == n)
            t[0].n_gains += 1

        for n in root.L:
            t = findall(self.taxonomy, filter_=lambda t: t.name == n)
            t[0].n_losses += 1
    def NavigateState(self, graph_root: AnyNode, node: AnyNode):
        """
        This function sets the state of a node depending on its (position in the) corresponding tree (-> DAG review as Tree)
            :param graph_root:AnyNode: tree root
            :param node:AnyNode: node from tree you want to update
        """
        try:
            if isNotNone(node.label) and isNone(node.content):
                label = node.label
                regex = str('\\b' + label + '\\b')
                desired = []

                tmp_desired = findall(graph_root,
                                      lambda node: node.label in label)

                for i in tmp_desired:
                    match = re.findall(regex, i.label)
                    if len(match) > 0:
                        desired.append(i)

                if (len(desired) < 1): print(node.state)
                elif (len(desired) == 1): self.NormalState(node)
                else:
                    node.followerNodes = desired[0].followerNodes
                    node.hasFollowerNodes = desired[0].hasFollowerNodes
                    node.hasInputNode = desired[0].hasInputNode
                    node.state = 'navigator'
                    node.name = 'navigator_' + str(node.id)
            else:
                self.NormalState(node)
        except Exception as ex:
            template = "An exception of type {0} occurred in [TParser.NavigateState]. Arguments:\n{1!r}"
            message = template.format(type(ex).__name__, ex.args)
            print(message)
Пример #3
0
def st_make_halo(stree):
    """
    Add NodeHalos to a ScheduleTree. A NodeHalo captures the halo exchanges
    that should take place before executing the sub-tree; these are described
    by means of a HaloScheme.
    """
    # Build a HaloScheme for each expression bundle
    halo_schemes = {}
    for n in findall(stree, lambda i: i.is_Exprs):
        try:
            halo_schemes[n] = HaloScheme(n.exprs, n.ispace)
        except HaloSchemeException as e:
            if configuration['mpi']:
                raise RuntimeError(str(e))

    # Insert the HaloScheme at a suitable level in the ScheduleTree
    mapper = {}
    for k, hs in halo_schemes.items():
        for f, v in hs.fmapper.items():
            spot = k
            ancestors = [n for n in k.ancestors if n.is_Iteration]
            for n in ancestors:
                test0 = any(n.dim is i.dim for i in v.halos)
                test1 = n.dim not in [i.root for i in v.loc_indices]
                if test0 or test1:
                    spot = n
                    break
            mapper.setdefault(spot, []).append((f, v))
    for spot, entries in mapper.items():
        insert(NodeHalo(HaloScheme(fmapper=dict(entries))), spot.parent, [spot])

    return stree
Пример #4
0
    def _hover(self, event):
        if event.inaxes == self._subplot:
            pos = [event.x, event.y]

            if self.has_cached_hovered_wedge() and self.latest_hovered_wedge[
                    'use_cached'] and self.latest_hovered_wedge[
                        'wedge'].contains_point(pos):
                self._update_wedge_annotation(pos)
            else:
                for series_index, wedges in enumerate(self._wedge_series):
                    for wedge_index, w in enumerate(wedges):
                        corresponding_data = self._chart_data[-series_index -
                                                              1][wedge_index]
                        if not corresponding_data.is_filler and w.contains_point(
                                pos):

                            node = findall(self.current_plotted_root,
                                           filter_=lambda n: n.id ==
                                           corresponding_data.node_id)

                            self.latest_hovered_wedge['wedge'] = w
                            self.latest_hovered_wedge[
                                'data'] = corresponding_data
                            self.latest_hovered_wedge['use_cached'] = len(
                                node[0].parent.children) > 1

                            self._update_wedge_annotation(pos)
                            return
                        else:
                            self._wedge_annotation.set_visible(False)
                self._blit()
Пример #5
0
def st_make_halo(stree):
    """
    Add :class:`NodeHalo`s to a :class:`ScheduleTree`. A HaloNode captures
    the halo exchanges that should take place before executing the sub-tree;
    these are described by means of a :class:`HaloScheme`.
    """
    # Build a HaloScheme for each expression bundle
    halo_schemes = {}
    for n in findall(stree, lambda i: i.is_Exprs):
        try:
            halo_schemes[n] = HaloScheme(n.exprs, n.ispace, n.dspace)
        except HaloSchemeException as e:
            if configuration['mpi']:
                raise RuntimeError(str(e))

    # Insert the HaloScheme at a suitable level in the ScheduleTree
    mapper = {}
    for k, hs in halo_schemes.items():
        for f, v in hs.fmapper.items():
            spot = k
            ancestors = [n for n in k.ancestors if n.is_Iteration]
            for n in ancestors:
                test0 = any(n.dim is i.dim for i in v.halos)
                test1 = n.dim not in [i.root for i in v.loc_indices]
                if test0 or test1:
                    spot = n
                    break
            mapper.setdefault(spot, []).append((f, v))
    for spot, entries in mapper.items():
        insert(NodeHalo(HaloScheme(fmapper=dict(entries))), spot.parent,
               [spot])

    return stree
Пример #6
0
 def set_evaluator_value(self):
     current_state, current_player = self.get_tree_height(), self.first_player
     while current_state >= 0:
         for node in findall(self.tree[0], filter_=lambda n: n.depth == current_state):
             node.evaluator_value = self.calculate_evaluator_value(node, current_player, current_state)
         current_player = not current_player
         current_state -= 1
Пример #7
0
    def on_file_open_clicked(self):
        file_path, _ = QFileDialog.getOpenFileName(self)

        if os.path.isfile(file_path):
            # Sets windows title based on open file.
            self.setWindowTitle(file_path + " - " + self.window_title)

            # Initializes game session from file.
            game_session = GameSession.from_file(file_path)

            # Builds the tree based on the game session object hierarchy.
            tree = proto_tree.construct_protocol_tree(game_session)

            # Creates network event list model and sets to view.
            network_event_list_model = NetworkEventListModel()
            network_event_list_model.set_root(tree)
            self.network_event_list.setModel(network_event_list_model)

            message_list_model = MessageListModel()
            message_list = anytree.findall(tree, filter_=lambda node: node.class_name == 'Message')
            message_list_model.set_message_list(message_list)
            self.message_list.setModel(message_list_model)

            # Creates object tree model and sets to view.
            object_tree_model = ObjectTreeModel()
            object_tree_model.set_root(tree)
            self.object_tree.setModel(object_tree_model)

            # Selects first element of network event list.
            event_list_first_item = self.network_event_list.model().index(0, 0, QModelIndex())
            self.network_event_list.setCurrentIndex(event_list_first_item)
            self.on_network_event_list_activated(event_list_first_item)
Пример #8
0
    def search_models(
        self,
        desired_ids: Optional[List[Union[ModelGroupsIdsEnum,
                                         ModelTypesIdsEnum]]] = None,
        desired_metainfo: Optional[ModelMetaInfoTemplate] = None
    ) -> Tuple[List[ModelTypesIdsEnum], List[ModelMetaInfo]]:

        desired_ids = [
            ModelGroupsIdsEnum.all
        ] if desired_ids is None or not desired_ids else desired_ids

        results = findall(self._tree,
                          filter_=lambda node: isinstance(node, ModelType) and
                          self._is_in_path(node, desired_ids))

        if desired_metainfo is not None:
            results = [
                result for result in results if isinstance(result, ModelType)
                and desired_metainfo.is_suits_for_template(result.meta_info)
            ]

        models_ids = [
            result.name for result in results
            if (result.name in self.model_types)
        ]
        models_metainfo = [
            result.meta_info for result in results
            if (result.name in self.model_types)
        ]

        return models_ids, models_metainfo
Пример #9
0
    def list_downstream_populations(self, population: str) -> list or None:
        """For a given population find all dependencies

        Parameters
        ----------
        population : str
            population name

        Returns
        -------
        list or None
            List of populations dependent on given population

        Raises
        ------
        AssertionError
            If Population does not exist
        """
        assert population in self.tree.keys(), f'population {population} does not exist; ' \
                                               f'valid population names include: {self.tree.keys()}'
        root = self.tree['root']
        node = self.tree[population]
        dependencies = [
            x.name
            for x in anytree.findall(root, filter_=lambda n: node in n.path)
        ]
        return [p for p in dependencies if p != population]
Пример #10
0
    def __call__(self, roots):
        #aaa = [[child.num_visited for child in findall(root, lambda node: node.depth == self.numActionPlaned)] for root in roots]
        grandchildren_visit = np.sum([[
            child.num_visited for child in findall(
                root, lambda node: node.depth == self.numActionPlaned)
        ] for root in roots],
                                     axis=0)
        #__import__('ipdb').set_trace()
        #for root in roots:
        #    for comboIndex in range(self.numActionIndexCombos):
        #        currParent = root
        #        for actionOrder in range(self.numActionPlaned):
        #            child = currParent.children[self.actionIndexCombosForActionPlaned[comboIndex][actionOrder]
        #            currParent = child
        #        numVisits[comboIndex] + = child.num_visited

        maxIndex = np.argwhere(
            grandchildren_visit == np.max(grandchildren_visit)).flatten()
        #print(maxIndex,grandchildren_visit)
        selectedActionIndexCombos = np.random.choice(maxIndex)
        action = [
            self.actionSpace[actionIndex] for actionIndex in
            self.actionIndexCombosForActionPlaned[selectedActionIndexCombos]
        ]
        return action
Пример #11
0
def get_group_ip(group):
    """ given a group, get the ip of the group switch """
    root = get_node_tree()
    group_node = findall(
        root, lambda node: next((True for x in node.properties['handles']
                                 if x == group), False))[0]
    return group_node.id if group_node else None
Пример #12
0
def find_candidate_minima(node: Node):
    """find everyone above this node that we've already visited.
    Previously visited nodes have a cumulative cost."""
    touched = anytree.findall(node.root,
                              filter_=lambda x: x.depth < node.depth and not x.
                              is_root and not visited(x))
    # and visited(x))  # and hasattr(x, 'cumulative_cost'))
    return touched
def ComputeItemPath(item1, item2, maxlength):
    if item1 != item2:
        str1path = findall(root, filter_=lambda node: node.name in (item1))
        str2path = findall(root, filter_=lambda node: node.name in (item2))
        str1path = str(str1path)
        str2path = str(str2path)
        str1lst = str1path.split('/')
        str2lst = str2path.split('/')
        for l in range(min(len(str1lst), len(str2lst))):
            if str1lst[l] != str2lst[l]:
                cmpindex = l
                break
        itempath = (len(str1lst) - cmpindex) + (len(str2lst) - cmpindex)
        cost = round(itempath / maxlength, 3)
    else:
        cost = 0
    return cost
def ComputeItemPathCost(matrix, i, j, item1, item2, maxlength):
    if ((matrix[i - 1][j] + 1) > matrix[i - 1][j - 1]) and (
        (matrix[i][j - 1] + 1) > matrix[i - 1][j - 1]):
        str1char = findall(root, filter_=lambda node: node.name in (item1))
        str2char = findall(root, filter_=lambda node: node.name in (item2))
        str1char = str(str1char)
        str2char = str(str2char)
        str1lst = str1char.split('/')
        str2lst = str2char.split('/')
        for l in range(min(len(str1lst), len(str2lst))):
            if str1lst[l] != str2lst[l]:
                cmpindex = l
                break
        itempath = (len(str1lst) - cmpindex) + (len(str2lst) - cmpindex)
        cost = round(itempath / maxlength, 3)
    else:
        cost = 1
    return cost
Пример #15
0
def stree_section(stree):
    """
    Add NodeSections to a ScheduleTree. A NodeSection, or simply "section",
    defines a sub-tree with the following properties:

        * The root is a node of type NodeSection;
        * The immediate children of the root are nodes of type NodeIteration;
        * The Dimensions of the immediate children are either:
            * identical, OR
            * different, but all of type SubDimension;
        * The Dimension of the immediate children cannot be a TimeDimension.
    """
    class Section(object):
        def __init__(self, node):
            self.parent = node.parent
            try:
                self.dim = node.dim
            except AttributeError:
                self.dim = None
            self.nodes = [node]

        def is_compatible(self, node):
            return self.parent == node.parent and self.dim.root == node.dim.root

    # Search candidate sections
    sections = []
    for i in range(stree.height):
        # Find all sections at depth `i`
        section = None
        for n in findall(stree, filter_=lambda n: n.depth == i):
            if any(p in flatten(s.nodes for s in sections)
                   for p in n.ancestors):
                # Already within a section
                continue
            elif n.is_Sync:
                # SyncNodes are self-contained
                sections.append(Section(n))
                section = None
            elif n.is_Iteration:
                if n.dim.is_Time and SEQUENTIAL in n.properties:
                    # If n.dim.is_Time, we end up here in 99.9% of the cases.
                    # Sometimes, however, time is a PARALLEL Dimension (e.g.,
                    # think of `norm` Operators)
                    section = None
                elif section is None or not section.is_compatible(n):
                    section = Section(n)
                    sections.append(section)
                else:
                    section.nodes.append(n)
            else:
                section = None

    # Transform the schedule tree by adding in sections
    for i in sections:
        insert(NodeSection(), i.parent, i.nodes)

    return stree
Пример #16
0
def section(stree):
    """
    Create sections in a :class:`ScheduleTree`. A section is a sub-tree with
    the following properties: ::

        * The root is a node of type :class:`NodeSection`;
        * The immediate children of the root are nodes of type :class:`NodeIteration`
          and have same parent.
        * The :class:`Dimension` of the immediate children are either: ::
            * identical, OR
            * different, but all of type :class:`SubDimension`;
        * The :class:`Dimension` of the immediate children cannot be a
          :class:`TimeDimension`.
    """
    class Section(object):
        def __init__(self, node):
            self.parent = node.parent
            self.dim = node.dim
            self.nodes = [node]

        def is_compatible(self, node):
            return (self.parent == node.parent
                    and (self.dim == node.dim or node.dim.is_Sub))

    # Search candidate sections
    sections = []
    for i in range(stree.height):
        # Find all sections at depth `i`
        section = None
        for n in findall(stree, filter_=lambda n: n.depth == i):
            if any(p in flatten(s.nodes for s in sections)
                   for p in n.ancestors):
                # Already within a section
                continue
            elif not n.is_Iteration or n.dim.is_Time:
                section = None
            elif section is None or not section.is_compatible(n):
                section = Section(n)
                sections.append(section)
            else:
                section.nodes.append(n)

    # Transform the schedule tree by adding in sections
    for i in sections:
        node = NodeSection()
        processed = []
        for n in list(i.parent.children):
            if n in i.nodes:
                n.parent = node
                if node not in processed:
                    processed.append(node)
            else:
                processed.append(n)
        i.parent.children = processed

    return stree
Пример #17
0
def get_ip_by_handle(handle):
    """ given a handle, get the ip of the handle switch """
    if "." in handle:  # check if handle is IP address
        return handle

    root = get_node_tree()
    handle_node = findall(
        root, lambda node: next(
            (True for x in node.properties['handles'] if x == handle), False))
    return handle_node[0].id if handle_node else None
Пример #18
0
    def walk(self, node: Node):
        self.iter_count += 1
        print(f'current node: {node.name}, depth: {node.depth}')
        compute_cumulative_cost(node)
        visit(node)

        if not node.is_leaf:
            print('\tThis is not a leaf; continuing down')
            self.walk(find_min(node.children))
        else:
            print('\tThis is a leaf; checking incumbency.')
            if self.incumbent is None or self.incumbent.cumulative_cost > node.cumulative_cost:
                print(
                    f'\t\tThere is no incumbent yet, or this leaf has a lower cost.  Promoting {node.name} to incumbent.'
                )
                self.incumbent = node
                to_prune = anytree.findall(
                    node.root,
                    filter_=lambda x: not x.is_root and x.depth < node.depth
                    and has_cumulative_cost(
                        x) and x.cumulative_cost > node.cumulative_cost)
                for x in to_prune:
                    x.parent = None
                pruned = len(to_prune)
                print(f'\t\tPruned {pruned} nodes')
                self.pruned_count += pruned
                self.history.append(node)
                next_node = find_min(
                    [x for x in node.root.children if not visited(x)])
                print(
                    f'\t\tIdentified new minimum node to visit: {next_node.name}, depth {next_node.depth}'
                )
                self.walk(next_node)
            else:
                candidate_minima = [
                    x for x in node.root.children
                    if not visited(x) and x not in node.ancestors
                ]
                if candidate_minima:
                    next_node = find_min(candidate_minima)
                    print(
                        f"\t\tLeaf {node.name} has a larger cumulatuve cost than the current incumbent."
                    )
                    print(f'\t\tReturning to a higher node {next_node.name}')
                    self.walk(next_node)
                else:
                    print(
                        f'\t\t\tTree is depleted. This leaf is not the new incumbent but no higher nodes have a lower cumulative cost'
                    )
                    print(
                        f'Pruning complete. {self.pruned_count} nodes were removed in {self.iter_count} passes'
                    )

        retval = node.root
        return retval
Пример #19
0
def get_contacts(root_node):
    """ Get all the contacts from our tree """
    log.debug(render_tree(root_node))
    clean_tree(root_node)
    roll_up(root_node)
    log.debug(render_tree(root_node))
    all_nodes = findall(
        root_node,
        filter_=lambda x: x.contact and x.contact.name and x.contact.position)
    [n.contact.get_names() for n in all_nodes]
    return set([n.contact for n in all_nodes])
Пример #20
0
    def find_node_by_name(self, name: str) -> Optional[XsdNode]:
        if name == self.expand_element.name:
            return self.expand_element

        result = findall(
            self.root,
            filter_=lambda node: node.name == name,
        )
        if len(result) > 0:
            return cast(XsdNode, result[0])
        return None
Пример #21
0
def verifymap(orbitmap):
    """Verifies an orbitmap, returns the checksum
    >>> verifymap(readmap("COM)B\\nB)C\\nC)D\\nD)E\\nE)F\\nB)G\\nG)H\\nD)I\\nE)J\\nJ)K\\nK)L"))
    42
    """
    count = 0
    orbiters = findall(orbitmap, filter_=lambda node: node.name != "COM")
    for orbiter in orbiters:
        count += orbiter.depth

    return count
def ComputeDiagonalCost(matrix, i, j, str1, str2, root):
    maxlength = SearchLongestPath(root)
    if ((matrix[i - 1][j] + 1) > matrix[i - 1][j - 1]) and (
        (matrix[i][j - 1] + 1) > matrix[i - 1][j - 1]):
        str1char = findall(root,
                           filter_=lambda node: node.name in (str1[i - 1]))
        str2char = findall(root,
                           filter_=lambda node: node.name in (str2[j - 1]))
        str1char = str(str1char)
        str2char = str(str2char)
        str1lst = str1char.split('/')
        str2lst = str2char.split('/')
        for l in range(min(len(str1lst), len(str2lst))):
            if str1lst[l] != str2lst[l]:
                cmpindex = l
                break
        itempath = (len(str1lst) - cmpindex) + (len(str2lst) - cmpindex)
        cost = round(itempath / maxlength, 3)
    else:
        cost = 1
    return cost
Пример #23
0
def _create_tree(target, t_paths):
    # This is to create a tree with the information of the dominant species
    root = Node(target, order=0)
    for idx, ds in enumerate(t_paths):
        for pa, v in ds.items():
            sps = np.concatenate(v)
            for sp in sps:
                p = findall(root,
                            filter_=lambda n: n.name == pa and n.order == idx)
                for m in p:
                    Node(sp, parent=m, order=idx + 1)
    return root
Пример #24
0
    def find_name(self,
                  root,
                  key,
                  script=False,
                  directory=False,
                  startpath=None,
                  parentfromtree=False,
                  fmt='native'):
        '''
        find files based on their names
        @script: output script
        @directory: only search for directories
        @startpath: node to start with
        @parentfromtree: get path from parent instead of stored relpath
        @fmt: output format
        '''
        self._debug('searching for \"{}\"'.format(key))
        start = root
        if startpath:
            start = self.get_node(root, startpath)
        self.term = key
        found = anytree.findall(start, filter_=self._find_name)
        paths = []
        for f in found:
            if f.type == self.TYPE_STORAGE:
                # ignore storage nodes
                continue
            if directory and f.type != self.TYPE_DIR:
                # ignore non directory
                continue

            # print the node
            if fmt == 'native':
                self._print_node(f,
                                 withpath=True,
                                 withdepth=True,
                                 withstorage=True,
                                 recalcparent=parentfromtree)
            elif fmt == 'csv':
                self._node_to_csv(f)

            if parentfromtree:
                paths.append(self._get_parents(f))
            else:
                paths.append(f.relpath)

        if script:
            tmp = ['${source}/' + x for x in paths]
            cmd = 'op=file; source=/media/mnt; $op {}'.format(' '.join(tmp))
            Logger.info(cmd)

        return found
Пример #25
0
def extract_tetrads_to_csv(tree: Node, outfile: str):
    tetrads = {}
    leaves = anytree.findall(tree, filter_=lambda x: x.is_leaf)
    for leaf in leaves:
        tetrad = leaf.path[1:]  # omit root
        tetrads[tetrad] = (gain(tetrad), cumulative_cost(leaf))

    df = pd.DataFrame({make_tetrad_str(k): v
                       for k, v in tetrads.items()}).transpose()
    df.columns = ['gain', 'cumulative_cost']
    df = df.sort_values('cumulative_cost')
    df.to_csv(outfile)
    print(f"wrote {os.path.abspath(outfile)}")
Пример #26
0
def main():
    with open('input.txt', 'r') as f:
        lines = f.read().splitlines()
        root=find_root(lines)
        tree=Node(root)
        tree=add_children(lines,root,tree)
        print_tree(tree)

        count=0
        for o in (findall(tree)):
            count += o.depth

        print(count)
Пример #27
0
 def _make_matches_from_leaf_nodes(self, last_node_before_leaf, prefix):
     nodes = anytree.findall(last_node_before_leaf,
                             lambda node: node.name.startswith(prefix),
                             maxlevel=2)
     matches = []
     for node in nodes:
         if node != last_node_before_leaf:
             this_match = ":".join(
                 [i.name for i in node.path if i.name != ''])
             if len(node.children) != 0:
                 this_match = this_match + ':'
             matches = matches + [this_match]
     return matches
 def __call__(self, roots):
     grandchildrenVisit = np.sum([[
         child.numVisited for child in findall(
             root, lambda node: node.depth == self.numActionPlaned)
     ] for root in roots],
                                 axis=0)
     maxIndex = np.argwhere(
         grandchildrenVisit == np.max(grandchildrenVisit)).flatten()
     selectedActionIndexCombos = np.random.choice(maxIndex)
     action = [
         self.actionSpace[actionIndex] for actionIndex in
         self.actionIndexCombosForActionPlaned[selectedActionIndexCombos]
     ]
     return action
Пример #29
0
def test_enum():

    class Animals(IntEnum):
        Mammal = 1
        Cat = 2
        Dog = 3

    root = Node("ANIMAL")
    mammal = Node(Animals.Mammal, parent=root)
    cat = Node(Animals.Cat, parent=mammal)
    dog = Node(Animals.Dog, parent=mammal)

    eq_(findall(root), (root, mammal, cat, dog))
    eq_(findall_by_attr(root, Animals.Cat), (cat, ))
Пример #30
0
    def add_gate(self, gate):
        """
        Add a gate to the gating strategy, see `gates` module. The gate ID must be unique in the gating strategy.

        :param gate: instance from a sub-class of the Gate class
        :return: None
        """

        if not isinstance(gate, Gate):
            raise ValueError("gate must be a sub-class of the Gate class")

        parent_id = gate.parent
        if parent_id is None:
            parent_id = 'root'

        # TODO: check for uniqueness of gate ID + gate path combo
        matched_nodes = anytree.findall(
            self._gate_tree,
            filter_=lambda g_node: g_node.name == gate.id and g_node.parent.
            name == parent_id)
        if len(matched_nodes) != 0:
            raise KeyError("Gate ID '%s' is already defined" % gate.id)

        parent_id = gate.parent
        if parent_id is None:
            parent_node = self._gate_tree
        else:
            matching_nodes = anytree.search.findall_by_attr(
                self._gate_tree, parent_id)

            if len(matching_nodes) == 0:
                # TODO: could be in a quadrant gate
                raise ValueError(
                    "Parent gate %s does not exist in the gating strategy" %
                    parent_id)
            elif len(matching_nodes) > 1:
                raise ValueError(
                    "Multiple gates exist matching parent ID %s, specify full gate path"
                    % parent_id)

            parent_node = matching_nodes[0]

        node = anytree.Node(gate.id, parent=parent_node, gate=gate)

        # Quadrant gates need special handling to add their individual quadrants as children.
        # Other gates cannot have the main quadrant gate as a parent, they can only reference
        # the individual quadrants as parents.
        if isinstance(gate, fk_gates.QuadrantGate):
            for q_id, q in gate.quadrants.items():
                anytree.Node(q_id, parent=node, gate=q)
Пример #31
0
def main():
   # part 1
   print("# part1:")
   f = open("input7.txt", "r")
   lines = f.readlines()
   f.close()
   root = Node("root")

   # generate first level
   for n_line, line in enumerate(lines):
      splited_line = line.replace("\n","").split(" contain ")
      Node(splited_line[0].strip().replace("bags", "bag").replace(".", ""), parent=root, bag_value=0)


   # generate n-th levels
   for pre, fill, node in RenderTree(root):
      for n_line, line in enumerate(lines):
         splited_line = line.replace("\n","").split(" contain ")
         if(node.name in splited_line[0]):
            desc = splited_line[1].split(",")
            for d in desc:
               d_value = ''.join([i for i in d if i.isdigit()]).strip()
               #if(len(d_value) == 0): d_value = 0
               d_name = ''.join([i for i in d if not i.isdigit()]).strip()
               d_name = d_name.replace("bags", "bag").replace(".", "")
               if(d_name not in "no other bag"):
                  Node(d_name, parent=node, bag_value=d_value)
         

   #print the tree
   # for pre, fill, node in RenderTree(root):
   #   print("%s%s" % (pre, node.name))

   results = []
   for pre, fill, node in RenderTree(root, maxlevel=2):
         finds = findall(node, filter_=lambda n: "shiny gold" in n.name)
         if(len(finds) > 0): results.append(finds)
   
   print("total part1 :", len(results) - 2)

   #part 2

   r = Resolver('name')
   shiny_gold_bag_node = r.get(root, "shiny gold bag")
   shiny_gold_bag_node.bag_value = 1
   # print the tree
   # for pre, fill, node in RenderTree(shiny_gold_bag_node):
   #    print("%s%s(%s)" % (pre, node.name, node.bag_value))
   print("total part2 :", count_bags(shiny_gold_bag_node))
Пример #32
0
def st_section(stree):
    """
    Add NodeSections to a ScheduleTree. A NodeSection, or simply "section",
    defines a sub-tree with the following properties:

        * The root is a node of type NodeSection;
        * The immediate children of the root are nodes of type NodeIteration;
        * The Dimensions of the immediate children are either:
            * identical, OR
            * different, but all of type SubDimension;
        * The Dimension of the immediate children cannot be a TimeDimension.
    """

    class Section(object):
        def __init__(self, node):
            self.parent = node.parent
            self.dim = node.dim
            self.nodes = [node]

        def is_compatible(self, node):
            return self.parent == node.parent and self.dim.root == node.dim.root

    # Search candidate sections
    sections = []
    for i in range(stree.height):
        # Find all sections at depth `i`
        section = None
        for n in findall(stree, filter_=lambda n: n.depth == i):
            if any(p in flatten(s.nodes for s in sections) for p in n.ancestors):
                # Already within a section
                continue
            elif not n.is_Iteration or n.dim.is_Time:
                section = None
            elif section is None or not section.is_compatible(n):
                section = Section(n)
                sections.append(section)
            else:
                section.nodes.append(n)

    # Transform the schedule tree by adding in sections
    for i in sections:
        insert(NodeSection(), i.parent, i.nodes)

    return stree