def test_relu_output_size(): x = torch.randn(2, 2) l1 = Dense(3, input_dim=2) l2 = Activation('relu') y = l1.forward(x) y = l2.forward(y) assert y.size() == (2, 3) assert (y.data >= 0).sum() == 6
def test_model_fit_unknown_loss(): x = torch.rand(20, 4) y = torch.rand(20, 10) model = Model(Dense(10, input_dim=x.size()[-1]), Activation('relu'), Dense(5), Activation('relu'), Dense(y.size()[-1])) assert len(model.params) > 0 with pytest.raises(Exception) as e: model.fit(x, y, loss='UNKNOWN_TEST', batch_size=10, n_epoch=5)
def test_model_adam_optmizer(): X = np.random.normal(size=[10, 10]).astype('float32') y = np.random.normal(size=[10, 1]).astype('float32') model = Model(Dense(10, input_dim=X.shape[-1]), Activation('relu'), Dense(5), Activation('relu'), Dense(y.shape[-1])) history = model.fit(X, y=y, loss='mse', optimizer='adam', epochs=10) y_pred = model.predict(X) assert type(y_pred) is np.ndarray assert len(history['loss']) == 10 assert all(type(v) is float for v in history['loss']) assert history['loss'] == sorted(history['loss'], reverse=True)
def test_model_simple_fit(): x = torch.rand(20, 4) y = torch.rand(20, 10) model = Model(Dense(10, input_dim=x.size()[-1]), Activation('relu'), Dense(5), Activation('relu'), Dense(y.size()[-1])) opt = SGD(lr=0.01, momentum=0.9) loss = mean_squared_error history = model.fit(x, y, loss=loss, optimizer='sgd', epochs=10, verbose=1) assert len(history['loss']) == 10 assert all(type(v) is float for v in history['loss']) assert history['loss'] == sorted(history['loss'], reverse=True)
def test_model_validation_data(): X = np.random.normal(size=[10, 10]).astype('float32') y = np.random.normal(size=[10, 1]).astype('float32') model = Model(Dense(10, input_dim=X.shape[-1]), Activation('relu'), Dense(5), Activation('relu'), Dense(y.shape[-1])) history = model.fit(X, y=y, loss='mse', val_data=(X, y)) y_pred = model.predict(X) assert type(y_pred) is np.ndarray assert 'loss' in history assert 'val_loss' in history assert all(type(v) is float for v in history['loss']) assert all(type(v) is float for v in history['val_loss']) assert history['loss'] == sorted(history['loss'], reverse=True)
def test_model_custom_loss(): x = torch.rand(20, 4) y = torch.rand(20, 10) model = Model(Dense(10, input_dim=x.size()[-1]), Activation('relu'), Dense(5), Activation('relu'), Dense(y.size()[-1])) opt = SGD(lr=0.01, momentum=0.9) def mae(y_true, y_pred): return torch.mean(torch.abs(y_true - y_pred)) history = model.fit(x, y, loss=mae, optimizer=opt, epochs=10) assert len(history['loss']) == 10 assert all(type(v) is float for v in history['loss']) assert history['loss'] == sorted(history['loss'], reverse=True)
def test_model_conv2d_dropout(): X = np.random.normal(size=[10, 3, 10, 10]).astype('float32') y = np.random.normal(size=[10, 1]).astype('float32') model = Model(Conv2D(4, kernel_size=(3, 3), input_dim=X.shape[1:]), Flatten(), Dense(5), Activation('relu'), Dense(5), Dropout(0.5), Activation('relu'), Dense(y.shape[-1])) history = model.fit(X, y=y, loss='mse', epochs=10, val_data=(X, y)) y_pred = model.predict(X) assert type(y_pred) is np.ndarray assert 'loss' in history assert 'val_loss' in history assert all(type(v) is float for v in history['loss']) assert all(type(v) is float for v in history['val_loss']) assert history['val_loss'] == sorted(history['val_loss'], reverse=True)
def test_model_add_layers(): model = Model() model.add(Dense(10)) model.add(Activation('relu')) model.add(Dense(1)) assert len(model.layers) == 3 assert type(model.layers[0]) == Dense assert type(model.layers[1]) == Activation
def test_model_recurrent_time_distributed(): X = np.random.normal(size=[2, 3, 4]).astype('float32') y = np.random.normal(size=[2, 3, 10]).astype('float32') model = Model( Recurrent(units=2, length=3, input_dim=4), Activation('relu'), TimeDistributed(Dense(units=10)), ) history = model.fit(X, y, loss='mse') y_pred = model.predict(X) assert history['loss'] == sorted(history['loss'], reverse=True)
def test_model_recurrent(): X = np.random.normal(size=[2, 3, 4]).astype('float32') y = np.random.normal(size=[2, 3, 2]).astype('float32') model = Model(Recurrent(units=2, length=3, input_dim=4), Activation('relu')) history = model.fit(X, y, loss='mse') y_pred = model.predict(X) assert type(y_pred) is np.ndarray assert 'loss' in history assert history['loss'] == sorted(history['loss'], reverse=True)
(X, y), (X_test, y_test) = datasets.load_mnist() X = X / 127.0 X_test = X_test / 127.0 y = np.eye(y.max() + 1)[y] y_test = np.eye(y_test.max() + 1)[y_test] print(X.shape, X_test.shape) X = X.astype('float32') X_test = X_test.astype('float32') y = y.astype('float32') y_test = y_test.astype('float32') model = Model( Conv2D(8, kernel_size=(3, 3), input_dim=X.shape[1:]), Flatten(), Activation('relu'), Dropout(0.5), Dense(100), Activation('relu'), Dropout(0.5), Dense(y_test.shape[-1]), Activation('softmax') ) loss = 'categorical_crossentropy' history = model.fit(X, y, loss=loss, val_data=(X_test, y_test)) y_pred = model.predict(X_test) acc = metrics.accuracy_score(y_test.argmax(axis=1), y_pred.argmax(axis=1)) print('Classes:', y.shape[1]) print('Accuracy:', acc)
def test_layer_get_params(): l = Dense(3, input_dim=3) assert len(l.params) == 2 l = Activation('relu') assert len(l.params) == 0
def test_model_constructor_layers(): model = Model(Dense(10), Activation('relu'), Dense(1)) assert len(model.layers) == 3 assert type(model.layers[0]) == Dense assert type(model.layers[1]) == Activation
from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn import metrics import numpy as np from aorun.models import Model from aorun.layers import Dense from aorun.layers import Activation X, y = datasets.load_digits(return_X_y=True) X = X.astype('float32') y = np.eye(y.max() + 1)[y].astype('float32') X = StandardScaler().fit_transform(X) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3) print(X_train.shape, y_train.shape) model = Model(Dense(100, input_dim=X_train.shape[-1]), Activation('relu'), Dense(100), Activation('relu'), Dense(y_test.shape[-1]), Activation('softmax')) loss = 'categorical_crossentropy' history = model.fit(X_train, y_train, loss=loss, val_split=0.1) y_pred = model.predict(X_test) acc = metrics.accuracy_score(y_test.argmax(axis=1), y_pred.argmax(axis=1)) print('Classes:', y.shape[1]) print('Accuracy:', acc)
from sklearn.preprocessing import StandardScaler from sklearn import metrics import numpy as np from aorun.models import Model from aorun.layers import ProbabilisticDense from aorun.layers import Activation from aorun.optimizers import SGD from aorun.losses import variational_loss X, y = datasets.load_digits(return_X_y=True) X = X.astype('float32') y = np.eye(y.max() + 1)[y].astype('float32') X = StandardScaler().fit_transform(X) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3) print(X_train.shape, y_train.shape) model = Model(ProbabilisticDense(200, input_dim=X_train.shape[-1]), Activation('relu'), ProbabilisticDense(200), Activation('relu'), ProbabilisticDense(y_test.shape[-1]), Activation('softmax')) opt = SGD(lr=0.1, momentum=0.9) loss = variational_loss(model, 'categorical_crossentropy') history = model.fit(X_train, y_train, epochs=20, loss=loss, optimizer=opt) y_pred = model.predict(X_test) acc = metrics.accuracy_score(y_test.argmax(axis=1), y_pred.argmax(axis=1)) print('test samples:', len(y_test)) print('classes:', len(y_test[0])) print('Accuracy:', acc)
import os import sys sys.path.insert(0, os.path.abspath('..')) from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn import metrics from aorun.models import Model from aorun.layers import Dense from aorun.layers import Activation from aorun.optimizers import SGD X, y = datasets.load_boston(return_X_y=True) X = StandardScaler().fit_transform(X).astype('float32') y = StandardScaler().fit_transform(y).astype('float32') X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3) model = Model(Dense(100, input_dim=X_train.shape[-1]), Activation('relu'), Dense(100), Activation('relu'), Dense(1)) sgd = SGD(lr=0.1) history = model.fit(X_train, y_train, loss='mse', optimizer=sgd, epochs=100) y_pred = model.predict(X_test) print('r2_score:', metrics.r2_score(y_test, y_pred)) print('mean_absolute_error:', metrics.mean_absolute_error(y_test, y_pred)) print('mean_squared_error:', metrics.mean_squared_error(y_test, y_pred))
def test_layer_relu(): x = Variable(torch.randn(10, 10)) l = Activation('relu') assert np.any(x.data.numpy() < 0.0) assert np.any(l.forward(x).data.numpy() >= 0.0)
def test_layer_softmax(): x = Variable(torch.randn(10, 10)) l = Activation('softmax') sum_softmax_x = torch.sum(l.forward(x), dim=1).data.numpy() assert np.all(np.abs(sum_softmax_x - 1) <= 1e-6)
from sklearn.preprocessing import StandardScaler from sklearn import metrics import torch from aorun.models import Model from aorun.layers import ProbabilisticDense from aorun.layers import Activation from aorun.optimizers import SGD from aorun.losses import variational_loss X, y = datasets.load_boston(return_X_y=True) X = X.astype('float32') y = y.astype('float32') X = StandardScaler().fit_transform(X) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3) model = Model() model.add(ProbabilisticDense(100, input_dim=X_train.shape[-1])) model.add(Activation('relu')) model.add(ProbabilisticDense(100)) model.add(Activation('relu')) model.add(ProbabilisticDense(1)) sgd = SGD(lr=0.1) loss = variational_loss(model, 'mean_squared_error') history = model.fit(X_train, y_train, loss=loss, optimizer=sgd, epochs=100) y_pred = model.predict(X_test) print('r2_score:', metrics.r2_score(y_test, y_pred)) print('mean_absolute_error:', metrics.mean_absolute_error(y_test, y_pred)) print('mean_squared_error:', metrics.mean_squared_error(y_test, y_pred))