def main(): classifier = svm.SVC() transformed_train_data = [ create_feature_vector(coordinates) for coordinates in train_data ] classifier.fit(transformed_train_data, train_labels) test_data, test_labels = apa.read_data_files(train_files) transformed_test_data = [ create_feature_vector(coordinates) for coordinates in test_data ] predicted = classifier.predict(transformed_test_data) conf_mat = np.zeros((10, 10)) success, error = 0, 0 for test_label, predicted_label in zip(test_labels, predicted): conf_mat[test_label, predicted_label] += 1 if test_label == predicted_label: success += 1 else: error += 1 precision = success / float(success + error) * 100 print("precision: %s " % precision) print_conf_mat(conf_mat)
def main(): classifier = svm.SVC() transformed_train_data = [create_feature_vector(coordinates) for coordinates in train_data] classifier.fit(transformed_train_data, train_labels) test_data, test_labels = apa.read_data_files(train_files) transformed_test_data = [create_feature_vector(coordinates) for coordinates in test_data] predicted = classifier.predict(transformed_test_data) conf_mat = np.zeros((10, 10)) success, error = 0, 0 for test_label, predicted_label in zip(test_labels, predicted): conf_mat[test_label, predicted_label] += 1 if test_label == predicted_label: success += 1 else: error += 1 precision = success / float(success + error) * 100 print("precision: %s " % precision) print_conf_mat(conf_mat)
test_nums = ['15', '19', '20'] apa_train_dirs = ["%s/apa%s" % (apa_data_path, i) for i in train_nums] apa_test_dirs = ["%s/apa%s" % (apa_data_path, i) for i in test_nums] def get_apa_files(apa_dirs): files = [] for apa_dir in apa_dirs: files += map(lambda s: os.path.join(apa_dir, s), os.listdir(apa_dir)) return files train_files = get_apa_files(apa_train_dirs) test_files = get_apa_files(apa_test_dirs) train_data, train_labels = apa.read_data_files(train_files) def create_feature_vector(coordinates): X, Y = [], [] for x, y in coordinates: X.append(x) Y.append(y) total_distance = 0 for pair in zip(coordinates[0:len(coordinates)-2], coordinates[1::len(coordinates)-1]): a, b = pair distance = np.linalg.norm(a-b) total_distance += distance var_x = np.var(X)
apa_train_dirs = ["%s/apa%s" % (apa_data_path, i) for i in train_nums] apa_test_dirs = ["%s/apa%s" % (apa_data_path, i) for i in test_nums] def get_apa_files(apa_dirs): files = [] for apa_dir in apa_dirs: files += map(lambda s: os.path.join(apa_dir, s), os.listdir(apa_dir)) return files train_files = get_apa_files(apa_train_dirs) test_files = get_apa_files(apa_test_dirs) train_data, train_labels = apa.read_data_files(train_files) def create_feature_vector(coordinates): X, Y = [], [] for x, y in coordinates: X.append(x) Y.append(y) total_distance = 0 for pair in zip(coordinates[0:len(coordinates) - 2], coordinates[1::len(coordinates) - 1]): a, b = pair distance = np.linalg.norm(a - b) total_distance += distance