def test_init_method_different_parameters(self):
     test_dir = File("../../character_examples").getPath()
     nr_of_training_examples = 90
     nr_of_test_examples = 10
     for size_classification_factor in drange(0.7, 6.0, 0.3):
         print str(size_classification_factor) + ' &',
         for nr_of_segs in range(4, 13):
             #print(nr_of_segs)
             test_scores = []
             for test_nr in range(10):
                 #print(test_nr)
                 extracor = SimpleImageFeatureExtractor(
                     nr_of_divisions=nr_of_segs,
                     size_classification_factor=size_classification_factor)
                 training_examples, test_examples = extracor.extract_training_and_test_examples(
                     test_dir, nr_of_training_examples, nr_of_test_examples)
                 classifier = CharacterClassifier(
                     training_examples,
                     nr_of_hmms_to_try=1,
                     fraction_of_examples_for_test=0,
                     train_with_examples=False,
                     initialisation_method=SpecializedHMM.InitMethod.
                     count_based)
                 test_scores.append(classifier.test(test_examples))
             score = sum(test_scores) / len(test_scores)
             print ' $' + str(score) + '$ ',
             if nr_of_segs == 12:
                 print '\\\\'
             else:
                 print '&',
def create_character_classification_count_matrix():
    '''
    This function do the following:
    
    1. Creates a character classifier with 90 training examples
    2. Runs a test with 10 test examples for every character. The results are put in a 
       matrix M so element M[i][j] contains the number of test examples for the character
       with index i that are classified to be the character with index j. 
    '''
    extracor = SimpleImageFeatureExtractor(nr_of_divisions=11, 
                                           size_classification_factor=3.4)
    training_examples, test_examples = extracor.extract_training_and_test_examples(File(File(File(".."),".."),"character_examples").getCanonicalPath(), 
                                                                                   nr_of_training_examples=90,
                                                                                   nr_of_test_examples=10)
    classifier = CharacterClassifier(training_examples,
                                     nr_of_hmms_to_try=1,
                                     fraction_of_examples_for_test=0,
                                     train_with_examples=False,
                                     initialisation_method=SpecializedHMM.InitMethod.count_based)
    alphabet = get_example_alphabet()
    classification_count_matrix = zeros(len(alphabet),len(alphabet))
    for label, examples in test_examples:
        character = label.lower()
        character_index = alphabet.index(character)
        for example in examples:
            classified_character = classifier.classify_character_string(example).lower()
            classified_character_index = alphabet.index(classified_character)
            count = classification_count_matrix[character_index][classified_character_index]
            classification_count_matrix[character_index][classified_character_index] = count + 1
    return classification_count_matrix
 def test_init_method_different_parameters(self):
     test_dir = File("../../character_examples").getPath()
     nr_of_training_examples = 90
     nr_of_test_examples = 10
     for size_classification_factor in drange(0.7, 6.0, 0.3):
         print str(size_classification_factor) + ' &',
         for nr_of_segs in range(4,13):
             #print(nr_of_segs)
             test_scores = []
             for test_nr in range(10):
                 #print(test_nr)
                 extracor = SimpleImageFeatureExtractor(nr_of_divisions=nr_of_segs, 
                                                        size_classification_factor=size_classification_factor)
                 training_examples, test_examples = extracor.extract_training_and_test_examples(test_dir, 
                                                                                                nr_of_training_examples, 
                                                                                                nr_of_test_examples)
                 classifier = CharacterClassifier(training_examples,
                                                  nr_of_hmms_to_try=1,
                                                  fraction_of_examples_for_test=0,
                                                  train_with_examples=False,
                                                  initialisation_method=SpecializedHMM.InitMethod.count_based)
                 test_scores.append(classifier.test(test_examples))
             score = sum(test_scores) / len(test_scores)
             print ' $' + str(score) +'$ ',
             if nr_of_segs == 12:
                 print '\\\\'
             else:
                 print '&',
Пример #4
0
def create_character_classification_count_matrix():
    '''
    This function do the following:
    
    1. Creates a character classifier with 90 training examples
    2. Runs a test with 10 test examples for every character. The results are put in a 
       matrix M so element M[i][j] contains the number of test examples for the character
       with index i that are classified to be the character with index j. 
    '''
    extracor = SimpleImageFeatureExtractor(nr_of_divisions=11,
                                           size_classification_factor=3.4)
    training_examples, test_examples = extracor.extract_training_and_test_examples(
        File(File(File(".."), ".."), "character_examples").getCanonicalPath(),
        nr_of_training_examples=90,
        nr_of_test_examples=10)
    classifier = CharacterClassifier(
        training_examples,
        nr_of_hmms_to_try=1,
        fraction_of_examples_for_test=0,
        train_with_examples=False,
        initialisation_method=SpecializedHMM.InitMethod.count_based)
    alphabet = get_example_alphabet()
    classification_count_matrix = zeros(len(alphabet), len(alphabet))
    for label, examples in test_examples:
        character = label.lower()
        character_index = alphabet.index(character)
        for example in examples:
            classified_character = classifier.classify_character_string(
                example).lower()
            classified_character_index = alphabet.index(classified_character)
            count = classification_count_matrix[character_index][
                classified_character_index]
            classification_count_matrix[character_index][
                classified_character_index] = count + 1
    return classification_count_matrix
 def get_character_classifier_with_init_method(traing_examples,
                                               init_method):
     return CharacterClassifier(traing_examples,
                                nr_of_hmms_to_try=1,
                                fraction_of_examples_for_test=0,
                                train_with_examples=False,
                                initialisation_method=init_method)
def create_character_classifier(save_to_file_path):
    example_dir = File("../../character_examples").getPath()
    nr_of_training_examples = 90
    nr_of_test_examples = 10
    
    extractor = SimpleImageFeatureExtractor(nr_of_divisions=11, 
                                            size_classification_factor=4.6)
    
   
    training_examples, test_examples = extractor.extract_training_and_test_examples(example_dir, 
                                                                                   nr_of_training_examples, 
                                                                                   nr_of_test_examples)
    
    classifier = CharacterClassifier(training_examples,
                                     nr_of_hmms_to_try=1,
                                     fraction_of_examples_for_test=0,
                                     train_with_examples=True,
                                     initialisation_method=SpecializedHMM.InitMethod.count_based,
                                     feature_extractor=extractor)
    test_result = str(classifier.test(test_examples))
    print('Prediction ratio:', test_result)
def create_character_classifier(save_to_file_path):
    example_dir = File("../../character_examples").getPath()
    nr_of_training_examples = 100
    nr_of_test_examples = 0
    
    extractor = SimpleImageFeatureExtractor(nr_of_divisions=7, 
                                           size_classification_factor=1.3)
    
    training_examples, test_examples = extractor.extract_training_and_test_examples(example_dir, 
                                                                                   nr_of_training_examples, 
                                                                                   nr_of_test_examples)
    classifier = CharacterClassifier(training_examples,
                                     nr_of_hmms_to_try=1,
                                     fraction_of_examples_for_test=0,
                                     train_with_examples=False,
                                     initialisation_method=SpecializedHMM.InitMethod.count_based,
                                     feature_extractor=extractor)
    classifier_string = classifier.to_string()
    file = open(save_to_file_path,'w')
    file.write(classifier_string)
    file.close()
Пример #8
0
 def get_character_classifier(self):
     path_to_this_dir = File(str(inspect.getfile(
         inspect.currentframe()))).getParent()
     classifier_filename = (
         "character_classifier_" +
         str(self.feature_extraction_number_of_segments) + "_segments_cf_" +
         str(self.feature_extraction_classification_factor).replace(
             '.', '_') + ".dat")
     character_classifier_file = open(
         File(path_to_this_dir, classifier_filename).getPath(), 'r')
     character_classifier = CharacterClassifier(
         from_string_string=character_classifier_file.read())
     character_classifier_file.close()
     return character_classifier
def create_character_classifier(save_to_file_path):
    example_dir = File("../../character_examples").getPath()
    nr_of_training_examples = 100
    nr_of_test_examples = 0

    extractor = SimpleImageFeatureExtractor(nr_of_divisions=11,
                                            size_classification_factor=4.6)

    training_examples, test_examples = extractor.extract_training_and_test_examples(
        example_dir, nr_of_training_examples, nr_of_test_examples)
    classifier = CharacterClassifier(
        training_examples,
        nr_of_hmms_to_try=1,
        fraction_of_examples_for_test=0,
        train_with_examples=False,
        initialisation_method=SpecializedHMM.InitMethod.count_based,
        feature_extractor=extractor)
    #test_result = str(classifier.test(test_examples))
    #print(test_result)
    classifier_string = classifier.to_string()
    file = open(save_to_file_path + ".dat", 'w')
    file.write(classifier_string)
    file.close()
Пример #10
0
 def __init__(self):
     '''
     Constructor
     '''
     #Create classifiers
     #Character classifier
     path_to_this_dir = File(str(inspect.getfile( inspect.currentframe() ))).getParent()
     character_classifier_file = open(File(path_to_this_dir,"character_classifier.dat").getPath(),'r')
     self.character_classifier = CharacterClassifier(from_string_string=character_classifier_file.read())
     character_classifier_file.close()
     #Word classifier
     word_classifier_file = open(File(path_to_this_dir,"word_classifier.dat").getPath(),'r')
     self.word_classifier= WordClassifier(from_string_string=word_classifier_file.read())
     word_classifier_file.close()
     #Set up window
     self.setTitle("HandReco Writer")
     self.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE)
     self.setLocationRelativeTo(None)
     self.setLayout(BorderLayout())
     #Set up menu
     menu_bar = JMenuBar()
     info_menu = JMenu("Info")
     def instructions(event):
         instr = '''
         The program can just recognise capital English characters.
         See Info -> Available Words... for available word corrections.
         
         Good Luck with the writing!'''
         JOptionPane.showMessageDialog(self, instr, 
                       "Instructions", 
                       JOptionPane.INFORMATION_MESSAGE)
     instructions_menu_item = JMenuItem("Instructions...",actionPerformed=instructions)
     info_menu.add(instructions_menu_item)
     def word_corrections(event):
         words_string = ""
         for word in self.word_classifier.words:
             words_string = words_string + word.upper() + "\n"
         text = "The words that can be corrected are:\n\n" +words_string
         dialog = JOptionPane(text, 
                              JOptionPane.INFORMATION_MESSAGE)
         dialog_wrapper = JDialog(self,"Available Words",False)
         dialog_wrapper.setContentPane(dialog)
         dialog_wrapper.pack()
         dialog_wrapper.setVisible(True)
     word_corrections_menu_item = JMenuItem("Available Words...",actionPerformed=word_corrections)
     info_menu.add(word_corrections_menu_item)
     menu_bar.add(info_menu)
     self.setJMenuBar(menu_bar)
     #Input panel
     input_panel = JPanel()
     input_panel.setLayout(BoxLayout(input_panel, BoxLayout.X_AXIS))
     input_panel.setBorder(BorderFactory.createTitledBorder("Input"))
     self.paint_area = PaintArea(100,100)
     input_panel.add(self.paint_area)
     input_options_panel = JPanel()
     input_options_panel.setLayout(BoxLayout(input_options_panel, BoxLayout.Y_AXIS))
     #Write Char
     write_char_panel = JPanel(BorderLayout())
     def write_char(event):
         char = self.character_classifier.classify_image(self.paint_area.image())
         self.text_area.setText(self.text_area.getText() + char)
         self.paint_area.clear()
     write_char_panel.add(JButton("Write Char", actionPerformed=write_char), BorderLayout.NORTH)
     input_options_panel.add(write_char_panel)
     #Space and Correct
     space_and_correct_panel = JPanel(BorderLayout())
     def space_and_correct(event):
         text = self.text_area.getText()
         words = text.split(" ")
         string = words[-1]
         try:
             word = self.word_classifier.classify(string.lower())
             words[-1] = word.upper()
         except:
             JOptionPane.showMessageDialog(self, "Have you entered a character which is not in the alphabet?", 
                           "Could not Correct", 
                           JOptionPane.ERROR_MESSAGE)
             self.text_area.setText(text + " ")
             return
         newText = ""
         for w in words:
             newText = newText + w + " "
         self.text_area.setText(newText)
     space_and_correct_panel.add(JButton("Space and Correct", actionPerformed=space_and_correct), BorderLayout.NORTH)
     input_options_panel.add(space_and_correct_panel)
     #Space
     space_panel = JPanel(BorderLayout())
     def space(event):
         self.text_area.setText(self.text_area.getText() + " ")
     space_panel.add(JButton("Space", actionPerformed=space), BorderLayout.NORTH)
     input_options_panel.add(space_panel)
     #Clear Input Area
     clear_input_area_panel = JPanel(BorderLayout())
     def clear(event):
         self.paint_area.clear()
     clear_input_area_panel.add(JButton("Clear Input Area", actionPerformed=clear), BorderLayout.NORTH)
     input_options_panel.add(clear_input_area_panel)
     input_panel.add(input_options_panel)
     self.add(input_panel, BorderLayout.NORTH)
     text_area_panel = JPanel()
     text_area_panel.setLayout(BorderLayout())
     text_area_panel.setBorder(BorderFactory.createTitledBorder("Text"))
     self.text_area = JTextArea()
     self.text_area.setLineWrap(True)
     #Increase font size
     font = self.text_area.getFont() 
     self.text_area.setFont(Font(font.getName(), Font.BOLD, 24))
     
     text_area_panel.add(JScrollPane(self.text_area), BorderLayout.CENTER)
     self.add(text_area_panel, BorderLayout.CENTER)
     self.pack()
     self.setSize(Dimension(300,300))
     self.setVisible(True)
Пример #11
0
    def __init__(self):
        '''
        Constructor
        '''
        #Create classifiers
        #Character classifier
        path_to_this_dir = File(str(inspect.getfile(
            inspect.currentframe()))).getParent()
        character_classifier_file = open(
            File(path_to_this_dir,
                 "character_classifier_11_segments_4_6_cf.dat").getPath(), 'r')
        self.character_classifier = CharacterClassifier(
            from_string_string=character_classifier_file.read())
        character_classifier_file.close()
        #Word classifier
        word_classifier_file = open(
            File(path_to_this_dir, "word_classifier.dat").getPath(), 'r')
        self.word_classifier = WordClassifier(
            from_string_string=word_classifier_file.read())
        word_classifier_file.close()
        #Set up window
        self.setTitle("HandReco Writer")
        self.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE)
        self.setLocationRelativeTo(None)
        self.setLayout(BorderLayout())
        #Set up menu
        menu_bar = JMenuBar()
        info_menu = JMenu("Info")

        def instructions(event):
            instr = '''
            The program can just recognise capital English characters.
            See Info -> Available Words... for available word corrections.
            
            Good Luck with the writing!'''
            JOptionPane.showMessageDialog(self, instr, "Instructions",
                                          JOptionPane.INFORMATION_MESSAGE)

        instructions_menu_item = JMenuItem("Instructions...",
                                           actionPerformed=instructions)
        info_menu.add(instructions_menu_item)

        def word_corrections(event):
            words_string = ""
            for word in self.word_classifier.words:
                words_string = words_string + word.upper() + "\n"
            text = "The words that can be corrected are:\n\n" + words_string
            dialog = JOptionPane(text, JOptionPane.INFORMATION_MESSAGE)
            dialog_wrapper = JDialog(self, "Available Words", False)
            dialog_wrapper.setContentPane(dialog)
            dialog_wrapper.pack()
            dialog_wrapper.setVisible(True)

        word_corrections_menu_item = JMenuItem(
            "Available Words...", actionPerformed=word_corrections)
        info_menu.add(word_corrections_menu_item)
        menu_bar.add(info_menu)
        self.setJMenuBar(menu_bar)
        #Input panel
        input_panel = JPanel()
        input_panel.setLayout(BoxLayout(input_panel, BoxLayout.X_AXIS))
        input_panel.setBorder(BorderFactory.createTitledBorder("Input"))
        self.paint_area = PaintArea(100, 100)
        input_panel.add(self.paint_area)
        input_options_panel = JPanel()
        input_options_panel.setLayout(
            BoxLayout(input_options_panel, BoxLayout.Y_AXIS))
        #Write Char
        write_char_panel = JPanel(BorderLayout())

        def write_char(event):
            char = self.character_classifier.classify_image(
                self.paint_area.image())
            self.text_area.setText(self.text_area.getText() + char)
            self.paint_area.clear()

        write_char_panel.add(JButton("Write Char", actionPerformed=write_char),
                             BorderLayout.NORTH)
        input_options_panel.add(write_char_panel)
        #Space and Correct
        space_and_correct_panel = JPanel(BorderLayout())

        def space_and_correct(event):
            text = self.text_area.getText()
            words = text.split(" ")
            string = words[-1]
            try:
                word = self.word_classifier.classify(string.lower())
                words[-1] = word.upper()
            except:
                JOptionPane.showMessageDialog(
                    self,
                    "Have you entered a character which is not in the alphabet?",
                    "Could not Correct", JOptionPane.ERROR_MESSAGE)
                self.text_area.setText(text + " ")
                return
            newText = ""
            for w in words:
                newText = newText + w + " "
            self.text_area.setText(newText)

        space_and_correct_panel.add(
            JButton("Space and Correct", actionPerformed=space_and_correct),
            BorderLayout.NORTH)
        input_options_panel.add(space_and_correct_panel)
        #Space
        space_panel = JPanel(BorderLayout())

        def space(event):
            self.text_area.setText(self.text_area.getText() + " ")

        space_panel.add(JButton("Space", actionPerformed=space),
                        BorderLayout.NORTH)
        input_options_panel.add(space_panel)
        #Clear Input Area
        clear_input_area_panel = JPanel(BorderLayout())

        def clear(event):
            self.paint_area.clear()

        clear_input_area_panel.add(
            JButton("Clear Input Area", actionPerformed=clear),
            BorderLayout.NORTH)
        input_options_panel.add(clear_input_area_panel)
        input_panel.add(input_options_panel)
        self.add(input_panel, BorderLayout.NORTH)
        text_area_panel = JPanel()
        text_area_panel.setLayout(BorderLayout())
        text_area_panel.setBorder(BorderFactory.createTitledBorder("Text"))
        self.text_area = JTextArea()
        self.text_area.setLineWrap(True)
        #Increase font size
        font = self.text_area.getFont()
        self.text_area.setFont(Font(font.getName(), Font.BOLD, 24))

        text_area_panel.add(JScrollPane(self.text_area), BorderLayout.CENTER)
        self.add(text_area_panel, BorderLayout.CENTER)
        self.pack()
        self.setSize(Dimension(300, 300))
        self.setVisible(True)